Characterization of the molecular film by angle-dependent XAS

A well-defined orientation of the molecular layer on the surface is important because of the large uniaxial magnetic anisotropy. Beside the angle-dependent XMCD, we performed XAS with linear polarized light. The difference between the absorption spectra of the linear horizontal polarization (μ_H) and the absorption spectra of the linear vertical polarization (μ_V) is the x-ray linear dichroism (XLD). The XLD demonstrates the electronic anisotropy of the investigated element. In Fig. 1 the absorption spectra for μ_H (black line), μ_V (red line) and the XLD signal (green line) are presented to grazing x-ray incidence (a) and normal x-ray incidence (b). For normal x-ray incidence both polarizations lead to identical absorption spectra, which means that there is no in-plane anisotropy regarding 90° rotation.

However, there is a clear anisotropy at grazing (45°) incidence, meaning that the electronic distribution in-plane is different to the out-of-plane one. Combining these two results, it is clear that all molecules are oriented with the Pc plane parallel to the graphite surface. Since the molecules are symmetric regarding a 90° in-plane rotation, there is no in plane XLD signal, but a strong out-of-plane dichroism.
Magnetization measurements on a bulk reference

Fig. 2 presents the magnetization measurements taken on a single crystal of TbPc$_2$ by means of a home-made Hall probe magnetometer [1,2]. The easy axes of the molecules are aligned with the external field. At zero magnetic field a clear remanent magnetization is visible at the temperature of 2 K.

Fig. 2 Magnetization measurements on a single crystal of TbPc$_2$
Characterization of the Molecules

MALDI-TOF MS is a powerful tool for the analysis of materials such as phthalocyanines and bis(phthalocyanines). For \([\text{TbPc}_2]^0\) and \([\text{DyPc}_2]^0\) complexes the parent ions are observed at \(m/z = 1183\) and 1187, respectively (Fig. 3). An expanded view of the peaks shows isotope distributions, which are in very good agreement with theoretical predictions.

The UV/vis/nIR absorption spectra (Fig. 4) are similar to the neutral green form of \([\text{LnPc}_2]^0\) spectra [3] with the most intense band - Q-bands at 672 nm. In the near-infrared region two main bands are observed at 906 nm and 1300-1800 nm. The high-energy band is related to the radical part and attributed to the \(\text{l}_{\pi}(\pi)\rightarrow\text{a}_{\text{u}}(\pi)\) transition; the lower-energy band is assigned to an intramolecular charge transfer (CTI). Those signals are the fingerprints of the neutral specie \([\text{LnPc}_2]^0\) and thus, confirm their nature. All the near-infrared bands disappear upon reduction by hydrazine hydrate (1% vv).