Supplementary Information

Highly fluorescent complexes with 3-isocyanoperylene and N-(2,5-di-tert-butylphenyl)-9-isocyno-perylen-3,4-dicarboximide

Sergio Lentijo,† J. Emilio Expósito,† Gabriel Aullón,‡ Jesús A. Miguel,†* and Pablo Espinet.†*

IU CINQUIMA Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid, Spain; and Departament de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.

Fig. S1 Absorption spectra of PMI-NC and their complexes 5a, 9a-12a, recorded in CHCl$_3$ solution (\sim10$^{-5}$ M) at room temperature

Fig. S2 Absorption spectra of Per-NC and their complexes 5b-11b, recorded in CHCl$_3$ solution (\sim10$^{-5}$ M) at room temperature

Fig. S3 Emission spectra of 11b in different solvents (ca.10^{-5} M) at room temperature.

Fig. S4 Schematic representation of main expected transition in the absorption spectra of PMIH and perylene.

Table S1 Calculated absorption parameters (wavelengths in nm and their intensities) for R-X (R = PMI and Per) compounds in gas phase and chloroform solution.

Table S2 Calculated absorption peaks for [M(CO)$_5$(CNR)] (M = Cr, Mo, W; R = PMI, Per).

Fig. S5 1H and 19F NMR spectra

Fig. S6 IR spectra

Fig. S7 Fluorescence decays in dichloromethane, at room temperature

† Universidad de Valladolid

‡ Universitat de Barcelona
Figure S1. Absorption spectra of PMI-NC and their complexes 5a, 9a-12a, recorded in CHCl₃ solution (\(\sim 10^{-5}\) M) at room temperature

Figure S2. Absorption spectra of Per-NC and their complexes 5b-11b, recorded in CHCl₃ solution (\(\sim 10^{-5}\) M) at room temperature

Fig. S3 Emission spectra of 11b in different solvents (ca.\(10^{-5}\) M) at room temperature.
Fig. S4 Schematic representation of main expected transition in the absorption spectra of PMIH and perylene.
Table S1. Calculated absorption parameters (wavelengths in nm, oscillator strength (f), and coefficients of the main contributions of the orbitals [in brackets]) for R-X (R = PMI and Per) compounds in gas phase and chloroform solution.

Organics

<table>
<thead>
<tr>
<th>λ (f)</th>
<th>Solvent</th>
<th>H</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMI-X</td>
<td>Gas phase</td>
<td>477 (0.61)</td>
<td>490 (0.69)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.62]</td>
<td>[0.61]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>260 (0.09), 259 (0.11)</td>
<td>261 (0.19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.48, 0.38], [0.44, 0.40]</td>
<td>[0.55, 0.23]</td>
</tr>
<tr>
<td></td>
<td>CHCl₃</td>
<td>500 (0.77)</td>
<td>512 (0.86)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.63]</td>
<td>[0.63]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>262 (0.26)</td>
<td>263 (0.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.55, 0.15]</td>
<td>[0.51, 0.30]</td>
</tr>
<tr>
<td>Per-X</td>
<td>Gas phase</td>
<td>428 (0.36)</td>
<td>446 (0.44)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.62]</td>
<td>[0.62]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>253 (0.30)</td>
<td>257 (0.28)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.48, 0.36]</td>
<td>[0.48, 0.25]</td>
</tr>
<tr>
<td></td>
<td>CHCl₃</td>
<td>442 (0.48)</td>
<td>465 (0.58)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.63]</td>
<td>[0.63]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>257 (0.51)</td>
<td>260 (0.44)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.50, 0.38]</td>
<td>[0.51, 0.22]</td>
</tr>
</tbody>
</table>

*a Coefficients are \([\pi_{HOMO} \rightarrow \pi^*_{LUMO}]\) for first transition in all cases, and \([\pi_{HOMO} \rightarrow \pi^*, \pi \rightarrow \pi^*_{LUMO}]\) for second band of perylene systems.*
(b) Chromium complexes

<table>
<thead>
<tr>
<th>λ (f)</th>
<th>[(PMI-NC)Cr(CO)₅]</th>
<th>[(PerNC)Cr(CO)₅]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>518 (0.97)</td>
<td>π(PMI)_H → π*(PMI-NC)₅ [0.70]</td>
<td>π(Per)_H → π*(Per-NC)₅ [0.70]</td>
</tr>
<tr>
<td>281 (0.08)</td>
<td>π(CO) + πd → π*(CO)₅ [0.52]</td>
<td>π(Per)_H → π*(Per) [0.42]</td>
</tr>
<tr>
<td></td>
<td>π(CO) → π*(PMI-NC) [0.33]</td>
<td>πd → π*(Per) [0.26]</td>
</tr>
<tr>
<td></td>
<td>266 (0.09)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>π(CO) + πd → π*(PMI-NC) [0.54]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>π(PMI) → π*(PMI) [0.24]</td>
<td></td>
</tr>
<tr>
<td>CHCl₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>536 (1.14)</td>
<td>π(PMI)_H → π*(PMI-NC)₅ [0.70]</td>
<td>π(Per)_H → π*(Per-NC)₅ [0.70]</td>
</tr>
<tr>
<td>282 (0.10)</td>
<td>π(CO) + πd → π*(CO)₅ [0.54]</td>
<td>π(Per)_H → π*(Per) [0.35]</td>
</tr>
<tr>
<td></td>
<td>π(CO) + πd → π*(PMI-NC) [0.31]</td>
<td>πd → π*(CO)₅ [0.31]</td>
</tr>
<tr>
<td></td>
<td>264 (0.12)</td>
<td>πd → π*(CO)₅ [0.24]</td>
</tr>
<tr>
<td></td>
<td>π(PMI) → π*(PMI) [0.38]</td>
<td>262 (0.22)</td>
</tr>
<tr>
<td></td>
<td>π(CO) + πd → π*(CO)₅ [0.35]</td>
<td>π(Per)_H → π*(Per) [0.37]</td>
</tr>
<tr>
<td></td>
<td>π(PMI) → π*(PMI) [0.24]</td>
<td>πd → π*(CO)₅ [0.28]</td>
</tr>
<tr>
<td></td>
<td>πd → π*(NC) [0.23]</td>
<td>πd → π*(NC) [0.23]</td>
</tr>
</tbody>
</table>

Annotation for the involved orbitals:
- π(PMI) and π(Per) indicate generic occupied orbitals as well as π*(PMI), and π*(Per) are empty ones. Since all of these orbitals are of type π, only H and L are emphasized. Orbital contribution on the nitrile group included when remarkable.
- π(Ph) and π*(Ph) are occupied and empty orbitals centered in the phenylic diimido substituent.
- Other fragments such as C₆F₅ or CO are also used to designate centered π orbitals.
- Other d-orbitals are generally written as πd.
(c) Gold complexes

<table>
<thead>
<tr>
<th>λ (f)</th>
<th>$[(\text{PMI-NC})\text{Au(C}_6\text{F}_5)]$</th>
<th>$[(\text{PerNC})\text{Au(C}_6\text{F}_5)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>519 (0.79)</td>
<td>474 (0.69)</td>
</tr>
<tr>
<td></td>
<td>$\pi(\text{PMI})_H \rightarrow \pi^*(\text{PMI-NC})_L$ [0.68]</td>
<td>$\pi(\text{Per})_H \rightarrow \pi^*(\text{Per-NC})_L$ [0.70]</td>
</tr>
<tr>
<td></td>
<td>481 (0.15)</td>
<td>296 (0.25)</td>
</tr>
<tr>
<td>Gas phase</td>
<td>$\pi(\text{C}_6\text{F}_5) \rightarrow \pi^*(\text{PMI-NC})_L$ [0.64]</td>
<td>$\pi(\text{C}_6\text{F}_5) \rightarrow \pi^*(\text{Per-NC})$ [0.53]</td>
</tr>
<tr>
<td></td>
<td>325 (0.12)</td>
<td>262 (0.19)</td>
</tr>
<tr>
<td></td>
<td>269 (0.10)</td>
<td>$\pi(\text{Per})_H \rightarrow \pi^*(\text{Per-NC})$ [0.49]</td>
</tr>
<tr>
<td></td>
<td>264 (0.12)</td>
<td>$\pi(\text{Per}) \rightarrow \pi^*(\text{Per-NC})_L$ [0.26]</td>
</tr>
<tr>
<td></td>
<td>$\pi(\text{PMI})_H \rightarrow \pi^*(\text{PMI})$ [0.48]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\pi(\text{PMI}) \rightarrow \pi^*(\text{PMI-NC})$ [0.30]</td>
<td></td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>527 (1.08)</td>
<td>493 (0.79)</td>
</tr>
<tr>
<td></td>
<td>$\pi(\text{PMI})_H \rightarrow \pi^*(\text{PMI-NC})_L$ [0.71]</td>
<td>$\pi(\text{Per})_H \rightarrow \pi^*(\text{Per-NC})_L$ [0.70]</td>
</tr>
<tr>
<td></td>
<td>332 (0.08)</td>
<td>297 (0.14)</td>
</tr>
<tr>
<td></td>
<td>$\pi(\text{PMI}) \rightarrow \pi^*(\text{PMI-NC})_L$ [0.46]</td>
<td>$\pi(\text{C}_6\text{F}_5) \rightarrow \pi^*(\text{Per-NC})$ [0.49]</td>
</tr>
<tr>
<td></td>
<td>292 (0.16)</td>
<td>266 (0.30)</td>
</tr>
<tr>
<td></td>
<td>$\pi(\text{PMI})_H \rightarrow \pi^*(\text{PMI})$ [0.40]</td>
<td>$\pi(\text{Per}) \rightarrow \pi^*(\text{Per-NC})_L$ [0.44]</td>
</tr>
<tr>
<td></td>
<td>$\pi(\text{C}_6\text{F}_5) \rightarrow \pi^*(\text{PMI-NC})_L$ [0.37]</td>
<td>$\pi(\text{Per})_H \rightarrow \pi^*(\text{Per-NC})$ [0.39]</td>
</tr>
<tr>
<td></td>
<td>288 (0.10)</td>
<td>262 (0.23)</td>
</tr>
<tr>
<td></td>
<td>288 (0.10)</td>
<td>$\pi(\text{Per}) \rightarrow \pi^*(\text{Per-NC})_L$ [0.52]</td>
</tr>
<tr>
<td></td>
<td>$\pi(\text{PMI})_H \rightarrow \pi^*(\text{PMI})$ [0.27]</td>
<td>$\pi(\text{Per})_H \rightarrow \pi^*(\text{Per-NC})$ [0.33]</td>
</tr>
<tr>
<td></td>
<td>264 (0.15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\pi(\text{PMI})_H \rightarrow \pi^*(\text{PMI-NC})$ [0.53]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\pi(\text{PMI}) \rightarrow \pi^*(\text{PMI-NC})_L$ [0.34]</td>
<td></td>
</tr>
</tbody>
</table>
Table S2. Calculated absorption peaks for \([\text{M(CO)}_5(\text{CNR})]\) (M = Cr, Mo, W; R = PMI, Per).

<table>
<thead>
<tr>
<th>R-X</th>
<th>Cr(CO)(_5)</th>
<th>Mo(CO)(_5)</th>
<th>W(CO)(_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gas phase CHCl(_3)</td>
<td>Gas phase CHCl(_3)</td>
<td>Gas phase CHCl(_3)</td>
</tr>
<tr>
<td>PMI-NC-X</td>
<td>(\lambda) (f)</td>
<td>(\lambda) (f)</td>
<td>(\lambda) (f)</td>
</tr>
<tr>
<td>518 (0.97)</td>
<td>536 (1.14)</td>
<td>526 (0.99)</td>
<td>542 (1.19)</td>
</tr>
<tr>
<td>281 (0.08)</td>
<td>299 (0.16)</td>
<td>300 (0.16)</td>
<td>303 (0.12)</td>
</tr>
<tr>
<td>266 (0.09)</td>
<td>266 (0.07)</td>
<td>267 (0.11)</td>
<td>265 (0.07)</td>
</tr>
<tr>
<td></td>
<td>264 (0.12)</td>
<td>266 (0.13)</td>
<td></td>
</tr>
<tr>
<td>Per-NC-X</td>
<td>(\lambda) (f)</td>
<td>(\lambda) (f)</td>
<td>(\lambda) (f)</td>
</tr>
<tr>
<td>468 (0.70)</td>
<td>482 (0.84)</td>
<td>474 (0.75)</td>
<td>487 (0.90)</td>
</tr>
<tr>
<td>259 (0.15)</td>
<td>285 (0.11)</td>
<td>286 (0.10)</td>
<td>286 (0.10)</td>
</tr>
<tr>
<td></td>
<td>262 (0.22)</td>
<td>264 (0.37)</td>
<td>262 (0.22)</td>
</tr>
<tr>
<td></td>
<td>256 (0.08)</td>
<td>259 (0.05)</td>
<td>259 (0.07)</td>
</tr>
</tbody>
</table>

Fig. S5 \(^1\)H and \(^{19}\)F NMR spectra

4a
Fig. S6. IR spectra
Fig. S7. Fluorescence decays in dichloromethane, at room temperature.

Mono-exponential and bi-exponential fluorescence decay models were fitted to each decay. Eqn (1) describes the mono-exponential decay model:

\[I(t) = I_0 \cdot \exp(-t/\tau) \]

(1)

where \(I_0 \) is the relative intensity, \(t \) is the time and \(\tau \) is the fluorescence lifetime, both expressed in ns. The bi-exponential decay model is expressed by Equation (2) as:

\[I(t) = A + B_1 \cdot \exp(-t/\tau_1) + B_2 \cdot \exp(-t/\tau_2) \]

(2)

where \(B_1 \) and \(B_2 \) are the relative intensities associated with two lifetimes, \(\tau_1 \) and \(\tau_2 \), respectively.

Mono-exponential models are normally used to fit fluorescence decay. Bi-exponential fits may be more appropriate for samples containing non-linear decays. Fitting was done using FAST software from Edinburgh Instruments by a least-squares algorithm using a reconvolution approach. In this method, convolution of Equation (1) or (2) with the instrumental response function (IRF) is done prior to evaluating the goodness of fit with a weighted \(\chi^2 \) parameter.

4a
4b

Discrete Components Analysis (Tail fitting)

Fitting range: [150; 2300] channels
χ^2: 1.013

<table>
<thead>
<tr>
<th>Exp Num</th>
<th>B</th>
<th>f</th>
<th>t(ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>612.6</td>
<td>100.0</td>
<td>4.626</td>
</tr>
</tbody>
</table>

Background: 0.288
Shift: 0 ns

5a

Discrete Components Analysis (Tail fitting)

Fitting range: [150; 2300] channels
χ^2: 1.027

<table>
<thead>
<tr>
<th>Exp Num</th>
<th>B</th>
<th>f</th>
<th>t(ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>834.6</td>
<td>100.0</td>
<td>4.188</td>
</tr>
</tbody>
</table>

Background: 0.138
Shift: 0 ns
5b

Discrete Components Analysis (Tail fitting)

Fitting range: [150; 2300] channels

\[c^2 = 1.039 \]

<table>
<thead>
<tr>
<th>Exp Num</th>
<th>B</th>
<th>f</th>
<th>t (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>604.5</td>
<td>100.0</td>
<td>4.149</td>
</tr>
</tbody>
</table>

Background: 0.791
Shift: 0 ns

6b

Discrete Components Analysis (Tail fitting)

Fitting range: [150; 2300] channels

\[c^2 = 1.039 \]

<table>
<thead>
<tr>
<th>Exp Num</th>
<th>B</th>
<th>f</th>
<th>t (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>604.5</td>
<td>100.0</td>
<td>4.149</td>
</tr>
</tbody>
</table>

Background: 0.791
Shift: 0 ns
7b

Discrete Components Analysis (Tail fitting)

Fitting range : [150; 2000] channels

\[c^2 = 1.032 \]

<table>
<thead>
<tr>
<th>Exp Num</th>
<th>B</th>
<th>f</th>
<th>t(ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>562.8</td>
<td>100.0</td>
<td>3.670</td>
</tr>
</tbody>
</table>

Background : 0.669
Shift : 0 ns

8b

Discrete Components Analysis (Tail fitting)

Fitting range : [150; 2000] channels

\[c^2 = 1.032 \]

<table>
<thead>
<tr>
<th>Exp Num</th>
<th>B</th>
<th>f</th>
<th>t(ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>562.8</td>
<td>100.0</td>
<td>3.670</td>
</tr>
</tbody>
</table>

Background : 0.669
Shift : 0 ns
9a Discrete Components Analysis (Tail fitting)

- Fitting range: [150; 2200] channels
- χ^2: 1.013

<table>
<thead>
<tr>
<th>Exp Num</th>
<th>B</th>
<th>f</th>
<th>t (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>848.4</td>
<td>100.0</td>
<td>4.388</td>
</tr>
</tbody>
</table>

Background: 0.206
Shift: 0 ns

9b Exponential Components Analysis (Tail Fitting)

- Fitting range: [100; 1024] channels
- χ^2: 1.201

<table>
<thead>
<tr>
<th>Bi</th>
<th>fi</th>
<th>t_i (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.5537</td>
<td>0.921</td>
</tr>
<tr>
<td>2</td>
<td>1855.0079</td>
<td>99.079</td>
</tr>
</tbody>
</table>

Shift: 0 ns
Decay Background: 5.529
10a

Discrete Components Analysis (Tail fitting)

Fitting range : [150; 2000] channels
\(c^2 \) : 1.062

<table>
<thead>
<tr>
<th>Exp Num</th>
<th>B</th>
<th>f</th>
<th>t(ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>807.2</td>
<td>100</td>
<td>3.568</td>
</tr>
</tbody>
</table>

Background : 0.210
Shift : 0 ns

10b

Exponential Components Analysis (Tail Fitting)

Fitting range : [100; 1024] channels
\(\chi^2 \) : 1216

<table>
<thead>
<tr>
<th></th>
<th>(B_i)</th>
<th>(f_i)</th>
<th>(t_i) (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1447.801</td>
<td>64.865</td>
<td>1.525</td>
</tr>
<tr>
<td>2</td>
<td>286.7444</td>
<td>35.135</td>
<td>4.171</td>
</tr>
</tbody>
</table>

Shift : 0 ns
Decay Background : 4.396
11a

Data and Fitted Curve

Solution

Fit range : [150; 2000] channels
χ^2 : 1.028

<table>
<thead>
<tr>
<th>Exp Num</th>
<th>B</th>
<th>f</th>
<th>t(ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>809.5</td>
<td>100.0</td>
<td>4.104</td>
</tr>
</tbody>
</table>

Background : 0.755
Shift : 0 ns

11b

Data and Fitted Curve

Exponential Components Analysis (Tail Fitting)

Fit range : [110; 800] channels

<table>
<thead>
<tr>
<th></th>
<th>B_i</th>
<th>f_i</th>
<th>t_i (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4437.2231</td>
<td>100.000</td>
<td>1.308</td>
</tr>
</tbody>
</table>

Shift : 0 ns
Decay Background : 6.141
Discrete Components Analysis (Tail fitting)

Fitting range : [150; 2000] channels

\(c^2 \) : 1.062

<table>
<thead>
<tr>
<th>Exp Num</th>
<th>B</th>
<th>f</th>
<th>t (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>807.2</td>
<td>1000</td>
<td>3.568</td>
</tr>
</tbody>
</table>

Background : 0.210
Shift : 0 ns