Supporting Information for

Probing Solvent Effects on Mixed Aggregates Associating a Chiral Lithium Amide and n-BuLi by NMR: From Structure to Reactivity

Gabriella Barozzino-Consiglio, Mathieu Rouen, Hassan Oulyadi,* Jacques Maddaluno and Anne Harrison-Marchand*

Université de Rouen, CNRS, INSA de Rouen, UMR 6014 & FR 3038, IRCOF: Laboratoire COBRA, 76821 Mont Saint Aignan Cedex (France)

E-mail: hassan.oulyadi@univ-rouen.fr
E-mail: anne.harrison@univ-rouen.fr

Table of Contents:

1. Instrumental Considerations S2
2. NMR spectra of amine 3a and amide 4a in Et₂O_d10 S3
 Figure S1: ¹H NMR spectra of 3a at 195K (a) and 4a at 195K (b) and at 250K (c) in Et₂O_d10 S3
 Figure S2: ¹³C{¹H} NMR spectra of 3a (top) and 4a (bottom) in Et₂O_d10 at 195K S4
 Figure S3: ¹H,¹³C-HMQC spectrum of 4a at 195K S5
 Figure S4: ¹H,¹³C-HMBC spectrum of 4a at 195K S5
 Figure S5: ¹H,¹H-COSY spectrum of 4a at 195K S6
 Figure S6: ⁶Li NMR spectra of n-BuLi (top) and 4a (bottom) in Et₂O_d10 at 195K S7
 Figure S7: ⁶Li NMR spectra with resolution enhancement (GB = 0.1, LB = −0.5) (top) and proton H¹ selective decoupling (bottom) of 4a in Et₂O_d10 at 250K S7
 Figure S8: ¹H,¹H-NOESY spectrum (mixing time τ_m = 0.60s) of 4a in Et₂O_d10 at 250K S8
 Figure S9: ¹H-DOSY spectrum of 4a in Et₂O_d10 at 195K S9

S1
Figure S10: Decay curves of 1H-DOSY for Internal References [COE (a), HMDS (b), SQA (c)] and 4a (d) in Et$_2$O$_{d10}$ at 195K
Table S1: D-FW analyses of 1H-DOSY data of 4a in Et$_2$O$_{d10}$ at 195K

3. NMR spectra of amine 3a and amide 4a in THF$_{d8}$

Figure S11: 1H NMR spectra of 3a (top) and 4a (bottom) in THF$_{d8}$ at 195K
Figure S12: 13C(1H) NMR spectra of 3a (top) and 4a (bottom) in THF$_{d8}$ at 195K
Figure S13: 1H,13C-HMQC spectrum of 4a in THF$_{d8}$ at 195K
Figure S14: 1H,13C-HMBC spectrum of 4a in THF$_{d8}$ at 195K
Figure S15: 1H,1H-COSY spectrum of 4a in THF$_{d8}$ at 195K
Figure S16: 6Li,1H-HOESY (mixing time $\tau_m = 1.44s$) spectrum of 4a in THF$_{d8}$ at 195K
Figure S17: 1H,1H-NOESY (mixing time $\tau_m = 0.60s$) spectrum of 4a in THF$_{d8}$ at 195K
Figure S18: 1H-DOSY spectrum of 4a in THF$_{d8}$ at 195K
Figure S19: Decay curves of 1H-DOSY for Internal References [COE (a), HMDS (b), SQA (c)], monomer 4a (d) and C$_2$-dimer 4a (e) in THF$_{d8}$ at 195K
Table 2: D-FW analyses of 1H-DOSY data of 4a in THF$_{d8}$ at 195K

4. NMR spectra of 4a/n-BuLi complex in Et$_2$O$_{d10}$ and THF$_{d8}$

Figure S20: 1H NMR spectra of 4a (top) and 4a + n-BuLi (bottom) in Et$_2$O$_{d10}$ at 195K
Figure S21: 1H NMR spectra of n-BuLi (a), 4a (b) and 4a + n-BuLi (c) in THF$_{d8}$ at 195
Figure S22: 13C(1H) NMR spectra of 4a (top) and 4a + n-BuLi (bottom) in THF$_{d8}$ at 195K
Figure S23: 1H,13C-HMQC spectrum of 4a + n-BuLi in THF$_{d8}$ at 195K
Figure S24: 1H,13C-HMBC spectrum of 4a + n-BuLi in THF$_{d8}$ at 195K
Figure S25: 1H,1H-COSY spectrum of 4a + n-BuLi in THF$_{d8}$ at 195K
Figure S26: 6Li,1H-HOESY (mixing time $\tau_m = 1.44s$) spectrum of 4a + n-BuLi in THF$_{d8}$ at 195K
Figure S27: 1H,1H-NOESY (mixing time $\tau_m = 0.60s$) spectrum of 4a + n-BuLi in THF$_{d8}$ at 195K
Figure S28: 1H-DOSY spectrum of 4a/n-BuLi complex in THF$_{d8}$ at 195K
Figure S29: Decay curves of 1H-DOSY for Internal References [COE (a), HMDS (b), SQA (c)], monomer 4a (d), C$_2$-dimer 4a (e) and 4a/n-BuLi complex (f) in THF$_{d8}$ at 195K
Table S3: D-FW analysis of 1H-DOSY data of 4a/n-BuLi complex in THF$_{d8}$ at 195K

1. Instrumental Considerations

NMR spectra were recorded at 195K and 250K on a Bruker AVIII 500 spectrometer operating at 500.13 MHz for 1H, 125.13 MHz for 13C and 73.60 MHz for 6Li. Experiments were run under TopSpin (version 2.1, Bruker Biospin, Karlsruhe) with a BBFO(1H,X) probe and a z gradient coil giving a maximum gradient of 50 G cm$^{-1}$. 1H and 13C chemical shifts were referenced to the solvent residual signals (for Et$_2$O$_{d10}$ at δ 3.34 ppm (1H) and 14.5 ppm (13C), for THF$_{d8}$ at δ 1.73 (1H) and 25.31 ppm(13C)). Lithium spectra were referenced to external 0.3 M 6LiCl solution in THF$_{d8}$ (δ 0.0).
2. NMR spectra of amine 3a and amide 4a in Et₂O_{d10}

Figure S1. ¹H NMR spectra of 3a at 195K (a) and 4a at 195K (b) and at 250K (c) in Et₂O_{d10}
Figure S2. 13C{1H} NMR spectra of 3a (top) and 4a (bottom) in Et$_2$O$_{d10}$ at 195K
Figure S3. 1H, 13C-HMQC spectrum of 4a in Et$_2$O$_{d10}$ at 195K

Figure S4. 1H, 13C-HMBC spectrum of 4a in Et$_2$O$_{d10}$ at 195K
Figure S5. 1H,1H-COSY spectrum of 4a in Et$_2$O at 195K
Figure S6. 6Li NMR spectra of n-BuLi (top) and 4a (bottom) in Et$_2$O$_{d10}$ at 195K

Figure S7. 6Li NMR spectra with resolution enhancement (GB = 0.1, LB = –0.5) (top) and proton H1 selective decoupling (bottom) of 4a in Et$_2$O$_{d10}$ at 250K
Figure S8. 1H,1H-NOESY (mixing time $\tau_m = 0.60$ s) spectrum of 4a in Et$_2$O$_{d10}$ at 250K.
Figure S9. 1H-DOSY spectrum of 4a in Et$_2$O$_{d10}$ at 195K

Figure S10. Decay curves of 1H-DOSY for Internal References [COE (a), HMDS (b), SQA (c)] and 4a (d) in Et$_2$O$_{d10}$ at 195K
Table S1 D-FW analyses of 1H-DOSY data of 4a in Et$_2$O$_{d10}$ at 195K

<table>
<thead>
<tr>
<th>compound</th>
<th>FW (g mol$^{-1}$)</th>
<th>LogFW</th>
<th>D (m2 s$^{-1}$)</th>
<th>logD</th>
<th>predicted FW (g mol$^{-1}$)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE</td>
<td>110,2</td>
<td>2,042</td>
<td>6,63E-10</td>
<td>-9,178</td>
<td>110,2</td>
<td></td>
</tr>
<tr>
<td>HMDS</td>
<td>146,4</td>
<td>2,165</td>
<td>6,10E-10</td>
<td>-9,214</td>
<td>146,4</td>
<td></td>
</tr>
<tr>
<td>SQA</td>
<td>410,7</td>
<td>2,613</td>
<td>4,50E-10</td>
<td>-9,346</td>
<td>410,7</td>
<td></td>
</tr>
<tr>
<td>Et2O${d9}$</td>
<td>68,7</td>
<td>1,837</td>
<td>7,61E-10</td>
<td>-9,118</td>
<td>83,2</td>
<td>-20.8</td>
</tr>
<tr>
<td>4a</td>
<td>479,8</td>
<td>2,681</td>
<td>4,29E-10</td>
<td>-9,367</td>
<td>494,5a</td>
<td>-2.5</td>
</tr>
</tbody>
</table>

a: the predicted FW is referred to an unsolvated dimer [([4a])$_2$].
3. NMR spectra of amine 3a and amide 4a in THF-d_8

Figure S11. 1H NMR spectra of 3a (top) and 4a (bottom) in THF-d_8 at 195K
Figure S12. 13C{1H} NMR spectra of 3a (top) and 4a (bottom) in THF$_{d8}$ at 195K
Figure S13. 1H, 13C-HMQC spectrum of 4a in THF$_{d8}$ at 195K

Figure S14. 1H, 13C-HMBC spectrum of 4a in THF$_{d8}$ at 195K
Figure S15. 1H-$_2^1$H-COSY spectrum of 4a in THF$_{d8}$ at 195K
Figure S16. 6Li,1H-HOESY spectrum (mixing time $\tau_m = 1.44$s) of 4a in THF$_{d8}$ at 195K
Figure S17. $^1H_1^1H$-NOESY spectrum (mixing time $\tau_m = 0.60s$) of 4a in THF$_{d8}$ at 195K
Figure S18. 1H-DOSY spectrum of 4a in THF$_{d8}$ at 195K

Figure S19. Decay curves of 1H-DOSY for Internal References [COE (a), HMDS (b), SQA (c)], monomer 4a (d) and C$_2$-dimer 4a (e) in THF$_{d8}$ at 195K
Table S2. D-FW analyses of 1H-DOSY data of 4a in THF$_{d8}$ at 195K

<table>
<thead>
<tr>
<th>compound</th>
<th>FW (g mol$^{-1}$)</th>
<th>LogFW</th>
<th>D (m2 s$^{-1}$)</th>
<th>logD</th>
<th>predicted FW (g mol$^{-1}$)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE</td>
<td>110.2</td>
<td>2.042</td>
<td>1.14E-10</td>
<td>-9.943</td>
<td>110.2</td>
<td></td>
</tr>
<tr>
<td>HMDS</td>
<td>146.4</td>
<td>2.165</td>
<td>9.75E-11</td>
<td>-10.011</td>
<td>146.4</td>
<td></td>
</tr>
<tr>
<td>SQA</td>
<td>410.7</td>
<td>2.613</td>
<td>4.39E-11</td>
<td>-10.358</td>
<td>410.7</td>
<td></td>
</tr>
<tr>
<td>THF$_{d7}$</td>
<td>69,040</td>
<td>1.839</td>
<td>1.65E-10</td>
<td>-9.783</td>
<td>79.1</td>
<td>-20.8</td>
</tr>
<tr>
<td>monomer 4a</td>
<td>500.0</td>
<td>2.699</td>
<td>3.82E-11</td>
<td>-10.418</td>
<td>484.7a</td>
<td>3.1</td>
</tr>
<tr>
<td>C$_2$-dimer 4a</td>
<td>525.4</td>
<td>2.720</td>
<td>3.68E-11</td>
<td>-10.434</td>
<td>494.5b</td>
<td>5.9</td>
</tr>
<tr>
<td>C$_2$-dimer 4a</td>
<td>525.4</td>
<td>2.720</td>
<td>3.68E-11</td>
<td>-10.434</td>
<td>573.7c</td>
<td>-9.2</td>
</tr>
</tbody>
</table>

a: the predicted FW is referred to a trisolvated monomer [(4a)$_3$+3THF]. b: the predicted FW is referred to an unsolvated dimer [(4a)$_2$]. c: the predicted FW is referred to a monosolvated dimer [(4a)$_2$+THF].
4. NMR spectra of 4a/n-BuLi complex in Et$_2$O$_{d10}$ and THF$_{d8}$

Figure S20. 1H NMR spectra of 4a (top) and 4a + n-BuLi (bottom) in Et$_2$O$_{d10}$ at 195K
Figure S21. 1H NMR spectra of n-BuLi (a), 4a (b) and 4a + n-BuLi (c) in THF$_{d8}$ at 195K
Figure S22. 13C{H} NMR spectra of 4a (top) and 4a + n-BuLi (bottom) in THF$_{d8}$ at 195K.
Figure S23. 1H,13C-HMQC spectrum of 4a + n-BuLi in THF$_{d8}$ at 195K

Figure S24. 1H,13C-HMBC spectrum of 4a + n-BuLi in THF$_{d8}$ at 195K
Figure S25. 1H-1H-COSY spectrum of 4a + n-BuLi in THF$_{d8}$ at 195K
Figure S26. 6Li,1H-HOESY spectrum (mixing time $\tau_m = 1.44s$) of 4a + n-BuLi in THF$_d8$ at 195K
Figure S27. 1H,1H-NOESY spectrum (mixing time $\tau_m = 0.60$ s) of 4a $+$ n-BuLi in THF$_{d8}$ at 195K
Figure S28. ¹H-DOSY spectrum of 4a / n-BuLi complex in THF₈ at 195K

Figure S29. Decay curves of ¹H-DOSY for Internal References [COE (a), HMDS (b), SQA (c)], monomer 4a (d), C₂-dimer 4a (e) and 4a / n-BuLi complex (f) in THF₈ at 195K
Table S3. D-FW analysis of 1H-DOSY data of 4a/n-BuLi complex in THF$_{d8}$ at 195K

<table>
<thead>
<tr>
<th>Compound</th>
<th>FW (g mol$^{-1}$)</th>
<th>LogFW</th>
<th>D (m2 s$^{-1}$)</th>
<th>logD</th>
<th>predicted FW (g mol$^{-1}$)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE</td>
<td>110.2</td>
<td>2.042</td>
<td>1.02E-10</td>
<td>-9.991</td>
<td>110.2</td>
<td></td>
</tr>
<tr>
<td>HMDS</td>
<td>146.4</td>
<td>2.165</td>
<td>8.82E-11</td>
<td>-10.054</td>
<td>146.4</td>
<td></td>
</tr>
<tr>
<td>SQA</td>
<td>410.7</td>
<td>2.613</td>
<td>3.75E-11</td>
<td>-10.426</td>
<td>410.7</td>
<td></td>
</tr>
<tr>
<td>THF$_{d7}$</td>
<td>70.8</td>
<td>1.850</td>
<td>1.49E-10</td>
<td>-9.827</td>
<td>79.1</td>
<td>-11.8</td>
</tr>
<tr>
<td>monomer 4a</td>
<td>519.2</td>
<td>2.715</td>
<td>3.15E-11</td>
<td>-10.502</td>
<td>484.7a</td>
<td>6.6</td>
</tr>
<tr>
<td>C_2-dimer 4a</td>
<td>527.1</td>
<td>2.722</td>
<td>3.11E-11</td>
<td>-10.507</td>
<td>494.5b</td>
<td>6.2</td>
</tr>
<tr>
<td>4a/n-BuLi complex</td>
<td>446.8</td>
<td>2.650</td>
<td>3.54E-11</td>
<td>-10.451</td>
<td>469.6c</td>
<td>-5.1</td>
</tr>
</tbody>
</table>

a: the predicted FW is referred to a trisolvated monomer [(4a) + 3THF]. b: the predicted FW is referred an unsolvated dimer [(4a)$_2$]. c: the predicted FW is referred to a disolvated mixed dimer [(4a+n-BuLi) + 2THF].

correlation between logD and logFW

$y = -0.78x - 8.384$

$R^2 = 0.9949$