Supplementary Information

Mechanism of Water Oxidation by Non-Heme Iron Catalysts when Driven with Sodium Periodate

Alexander Rene Parent,^{a*} Takashi Nakazono,^b Shu Lin,^b Satoshi Utsunomiya^b and Ken Sakai^{a,b,c*}

^a International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan

^b Department of Chemistry, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan

^c Center for Molecular Systems (CMS), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan

E-mail: aparent@chem.kyushu-univ.jp; ksakai@chem.kyushu-univ.jp

Figure S1. NMR Spectra of the BPyA ligand in CDCl₃.

Figure S2. ESI-MS of BPyA in MeOH, the peak at 272 m/z corresponds to LH⁺.

Figure S3. ESI-MS of **1** in MeOH. The peak at 901 m/z corresponds to μ -(SO₄)- μ -(O)-[Fe(TPA)]₂(HSO₄)⁺. The peak at 883 m/z corresponds to μ -(SO₄)[Fe(TPA)]₂(SO₄)⁺. The peak at m/z 515 corresponds to μ -(O)-(TPA)Fe₂(HSO₄)⁺. The peak at m/z 442 corresponds to Fe(TPA)(OH)₂(MeOH)₂⁺. The peak at m/z 291 corresponds to TPAH⁺.

Figure S4. ESI-MS of **2** in methanol. The peak at 765.2 m/z corresponds to a sulfate or hydroxide bridged Fe dimer of the formula (OH)(SO₄)[Fe(BPyA)]₂⁺. The peak at 748.1 m/z corresponds to a sulfate bridged Fe dimer of the formula μ -(SO₄)[Fe(BPyA)]₂⁺. The peak at 854.1 m/z corresponds to a sulfate bridged Fe dimer of the formula μ -(SO₄)(HSO₄)[Fe(BPyA)]₂⁺. The peak at 357.1 m/z corresponds to Fe(BPyA)(OMe)⁺. The major peak at 343.1 m/z corresponds to Fe(BPyA)(OH)⁺.

Figure S5. Visible spectra during pH titration of 10 mL 523 μM 1 with 10 mM NaOH.

Figure S6. Species concentrations predicted by the SPECFIT fitting of the pH titration of 10 mL 523 μ M 1 with 10 mM NaOH.

Figure S7. Calculated visible spectra of monomeric (blue) and dimeric (orange) 2 by the SPECFIT global fitting of the concentration dependent visible absorption of 2 (Fig. 3b).

Figure S8. Linear fit to $(\epsilon_m - \epsilon)/C_m^{\circ}$ vs. $(\epsilon - \epsilon_d)^2$ at 518 nm for 2.

Figure S9. Linear fit to $(\epsilon_m$ - $\epsilon)/C_m^\circ$ vs. $(\epsilon$ - $\epsilon_d)^2$ at 632 nm for 2.

Figure S10. Visible time-course upon addition of 94 μM 1 to 10.0 mM NalO4.

Figure S11. Calculated rate constants vs. concentration of **1** for k_1 (blue), and K_2 (orange) in 10.0 mM NalO₄, pH 5.0. Dotted line shows linear fit to k_2 vs. [**1**].

Figure S12. Visible spectra of a 145 μ M solution of **1** titrated with 9.75 mM NaIO₄, a total of 12 equivalents of periodate (24 oxidizing equivalents) were added.

Figure S13. Turnovers vs. time for oxygen produced during the reaction of 12.4 μ M 1 with 9.76 mM H₂O₂.

Figure S14. Observed (top) and calculated (bottom) isotope ratios for the peak at 514.9 m/z and its assigned species in Fig. 13a.

Figure S15. Observed (top) and calculated (bottom) isotope ratios for the peak at 555.9 m/z and its assigned species in Fig. 13b.

Figure S16. Observed (top) and calculated (bottom) isotope ratios for the peak at 496.9 m/z and its assigned species in Fig. 13c.

Figure S17. Observed (top) and calculated (bottom) isotope ratios for the peak at 537.9 m/z and its assigned species in Fig. 13d.

Figure S18. ESI-MS of 1 after dissolution in water, addition of 1 equivalent of sodium periodate, and dilution with acetonitrile.

Figure S19. ESI-MS of 1 after dissolution in water, addition of 2 equivalents of sodium periodate, and dilution with acetonitrile.

Figure S20. ESI-MS of 1 after dissolution in water, addition of 3 equivalents of sodium periodate, and dilution with acetonitrile.

Figure S21. ESI-MS of 1 after dissolution in water, addition of 4 equivalents of sodium periodate, and dilution with acetonitrile.

Figure S22. ESI-MS of 1 after dissolution in water, addition of 5 equivalents of sodium periodate, and dilution with acetonitrile.

Figure S23. ESI-MS of 1 after dissolution in water, addition of 6 equivalents of sodium periodate, and dilution with acetonitrile.

Figure S24. ESI-MS of 1 after dissolution in water, addition of 7 equivalents of sodium periodate, and dilution with acetonitrile.

Figure S25. ESI-MS of 1 after dissolution in water, addition of 8 equivalents of sodium periodate, and dilution with acetonitrile.

Figure S26. ESI-MS of 1 after dissolution in water, addition of 9 equivalents of sodium periodate, and dilution with acetonitrile.

Figure S27. ESI-MS of 1 after dissolution in water, addition of 10 equivalents of sodium periodate, and dilution with acetonitrile.

Figure S28. ESI-MS of 1 after dissolution in water, addition of 14 equivalents of sodium periodate, and dilution with acetonitrile.

Figure S29. ESI-MS of 1 after dissolution in water, addition of 16 equivalents of sodium periodate, and dilution with acetonitrile.

Figure S30. Observed (top) and calculated (bottom) isotope ratios for the peak at 994.9 m/z and its assigned species in Fig. 13e.

Figure S31. Cyclic voltammogram of 0.5 mM **2** (orange) and 1.0 mM BPyA (blue), under Ar purge in 100 mM aqueous phosphate buffer, pH 6.8. The peak at ~0.78 V vs. SCE in **2** appears to correspond to ligand oxidation. Further oxidation of the ligand which occurs at ~0.92 V vs. SCE appears to be inhibited by coordination to Fe.

Figure S32. Turnovers vs. time for the reaction of 10.6 μ M 2 with 10.1 mM NaIO₄ (left), and for the reaction of 12.4 μ M 1 with 10.0 mM NaIO₄ (right).

Figure S33. Turnovers vs. time for the reaction of 51.9 μ M 2 (Fe basis) with 10.0 mM sodium periodate.

Figure S34. ACF fitting curve of a solution of 0.92 mM NaIO4.

Figure S35. ACF fitting curve after addition of $84.7 \mu M$ Fe(NO_3)_3 to 0.92 mM NaIO_4.

Figure S36. ACF fitting curve of 10 mM NaIO₄.

Figure S37. ACF fitting curve 4 minutes after addition of 30.7 μ M 1 to 10 mM NaIO₄.

Figure S38. ACF fitting curve 80 minutes after addition of 30.7 μ M 1 to 10 mM NaIO₄.

Figure S39. A high angle annular dark-field scanning TEM (HAADF-STEM) image (left) and the EDS point analysis (right) indicated by the cross in the left pane for nanoparticles generated during the reaction of $Fe(NO_3)_3$ with sodium periodate.

Figure S40. A HAADF-STEM image of nanoparticulate matter formed during the reaction of $Fe(NO_3)_3$ with sodium periodate (left) and the elemental map of N K-line (middle) and Si K-line (right). Compare with Fig. 18 in the main text.

Figure S41. Residuals from the SPECFIT fitting of the reaction of 48.5 μ M 1 with 10.0 mM sodium periodate.

Figure S42. SPECFIT fitting of the reaction of 48.5 μ M 1 with 10.0 mM sodium periodate (green) vs. the observed absorbance at 600 nm (red).

Figure S43. SPECFIT fitting of the reaction of 48.5 μ M 1 with 10.0 mM sodium periodate (green) vs. the observed absorbance at 496 nm (red).

Figure S44. SPECFIT fitting of the reaction of 48.5 μ M 1 with 10.0 mM sodium periodate (green) vs. the observed absorbance at 426 nm (red).

Figure S45. SPECFIT fitting of the reaction of 48.5 μ M 1 with 10.0 mM sodium periodate (green) vs. the observed absorbance at 650 nm (red).

Figure S46. SPECFIT fitting of the reaction of 48.5 μ M 1 with 10.0 mM sodium periodate (green) vs. the observed absorbance at 729 nm (red).

Figure S47. SPECFIT fitting of the reaction of 48.5 μ M 1 with 10.0 mM sodium periodate (green) vs. the observed absorbance at 786 nm (red).

Figure S48. Residuals from the SPECFIT fitting of the titration of 145 μ M 1 with 9.75 mM sodium periodate.

Figure S49. SPECFIT fitting of the titration of 145 μ M 1 with 9.75 mM sodium periodate (green) vs. the observed absorbance at 449 nm (red).

Figure S50. SPECFIT fitting of the titration of 145 μ M 1 with 9.75 mM sodium periodate (green) vs. the observed absorbance at 488 nm (red).

Figure S51. SPECFIT fitting of the titration of 145 μ M 1 with 9.75 mM sodium periodate (green) vs. the observed absorbance at 525 nm (red).

Figure S52. SPECFIT fitting of the titration of 145 μ M **1** with 9.75 mM sodium periodate (green) vs. the observed absorbance at 607 nm (red).

Figure S53. SPECFIT fitting of the titration of 145 μ M 1 with 9.75 mM sodium periodate (green) vs. the observed absorbance at 652 nm (red).

Figure 54. SPECFIT fitting of the titration of 145 μ M **1** with 9.75 mM sodium periodate (green) vs. the observed absorbance at 700 nm (red).

Figure 55. SPECFIT fitting of the titration of 145 μ M 1 with 9.75 mM sodium periodate (green) vs. the observed absorbance at 750 nm (red).

Figure 56. SPECFIT fitting of the titration of 145 μ M 1 with 9.75 mM sodium periodate (green) vs. the observed absorbance at 800 nm (red).

	1	2
formula	C37 H42 Fe2 N8 O14 S3	C36 H63 Fe2 N6 O17.5 S
fw	1030.67	1035.73
color, habit	Dark Green, Blocks	Dark Red, Prisms
crystal size, mm	0.13x0.1x0.08	0.3x0.2x0.12
crystal system	Monoclinic	Orthorhombic
space group	P 21/n	P b c n
a, A	12.8773(10)	16.051(5)
b, A	24.3493(19)	19.314(6)
c, A	13.5153(10)	14.958(4)
a, deg	90.00	90.00
b, deg	102.513(1)	90.00
g, deg	90.00	90.00
V, A3	4137.1(5)	4637(2)
Z	4	4
F(000)	2128	2116
dcalc, g/cm3	1.655	1.483
m(Mo Ka), mm-1	0.932	0.787
trans coeff	0.889 - 0.928	0.574 - 0.746
Т, К	100(2)	100(2)
radiation, A	0.71073	0.71073
theta range, deg	$2.15 < \theta < 27.10$	$2.11 < \theta < 26.72$
reflns measd	46117	39053
uniq reflns	9116	4910
R(int)	0.0262	0.0464
data/restraints/params	9116/0/734	4910/0/311
R1	0.0278	0.0878
wR2	0.0708	0.2044
GOF	1.040	1.171
max/mean shift/esd	0.002/0.000	0.000/0.000
max/min diff. peaks	0.614/-0.351	1.243/-0.726

Table S1. Crystallographic Data

Fe1-O1	1.7914(12)	Fe1-O3	2.0219(12)
Fe1-N3	2.1337(15)	Fe1-N1	2.1356(15)
Fe1-N4	2.1364(14)	Fe1-N2	2.2354(15)
Fe2-O1	1.8061(12)	Fe2-O2	1.9645(12)
Fe2-N7	2.1214(14)	Fe2-N5	2.1343(15)
Fe2-N6	2.2159(14)	Fe2-N8	2.2205(15)
S1-O5	1.4395(14)	S1-O4	1.4543(13)
S1-O3	1.5015(12)	S1-O2	1.5159(13)
S2-O8	1.4425(14)	S2-O6	1.4451(14)
S2-O9	1.4580(14)	S2-O7	1.5813(14)
S3-O13	1.4397(14)	S3-O11	1.4481(14)
S3-O10	1.4491(14)	S3-O12	1.5869(14)
O1M-C1M	1.429(3)	N1-C1	1.345(2)
N1-C5	1.346(2)	N2-C13	1.481(2)
N2-C7	1.485(2)	N2-C6	1.488(2)
N3-C8	1.346(2)	N3-C12	1.349(2)
N4-C18	1.349(2)	N4-C14	1.352(2)
N5-C19	1.346(2)	N5-C23	1.347(2)
N6-C31	1.482(2)	N6-C24	1.485(2)
N6-C25	1.491(2)	N7-C36	1.343(2)
N7-C32	1.345(2)	N8-C26	1.342(2)
N8-C30	1.347(2)	C1-C2	1.383(3)
C2-C3	1.389(3)	C3-C4	1.388(3)
C4-C5	1.393(3)	C5-C6	1.505(3)
C7-C8	1.509(3)	C8-C9	1.390(3)
C9-C10	1.382(3)	C10-C11	1.392(3)
C11-C12	1.379(3)	C13-C14	1.502(2)
C14-C15	1.387(2)	C15-C16	1.390(3)
C16-C17	1.387(3)	C17-C18	1.383(2)
C19-C20	1.381(3)	C20-C21	1.386(3)
C21-C22	1.387(3)	C22-C23	1.386(2)
C23-C24	1.512(2)	C25-C26	1.508(2)
C26-C27	1.388(3)	C27-C28	1.384(3)
C28-C29	1.387(3)	C29-C30	1.382(3)
C31-C32	1.506(2)	C32-C33	1.383(2)
C33-C34	1.384(3)	C34-C35	1.382(3)
C35-C36	1.377(3)		
O1-Fe1-O3	99.13(5)	O1-Fe1-N3	97.71(6)
O3-Fe1-N3	162.66(5)	O1-Fe1-N1	104.79(6)
O3-Fe1-N1	87.86(5)	N3-Fe1-N1	83.90(6)
O1-Fe1-N4	102.25(6)	O3-Fe1-N4	86.05(5)
N3-Fe1-N4	94.38(5)	N1-Fe1-N4	152.89(6)
O1-Fe1-N2	176.14(6)	O3-Fe1-N2	84.49(5)

Table S2. Interatomic Distances (Å) and Angles (°) for ${\bf 1}$

N3-Fe1-N2	78.78(6)	N1-Fe1-N2	76.59(5)
N4-Fe1-N2	76.55(5)	O1-Fe2-O2	100.36(5)
O1-Fe2-N7	94.24(5)	O2-Fe2-N7	106.46(6)
O1-Fe2-N5	96.15(5)	O2-Fe2-N5	97.33(6)
N7-Fe2-N5	151.83(6)	O1-Fe2-N6	98.50(5)
O2-Fe2-N6	160.41(5)	N7-Fe2-N6	77.25(5)
N5-Fe2-N6	75.35(5)	O1-Fe2-N8	174.44(5)
O2-Fe2-N8	84.08(5)	N7-Fe2-N8	81.22(5)
N5-Fe2-N8	86.53(6)	N6-Fe2-N8	77.42(5)
O5-S1-O4	114.23(8)	O5-S1-O3	110.88(8)
O4-S1-O3	107.73(7)	O5-S1-O2	109.09(8)
O4-S1-O2	107.67(8)	O3-S1-O2	106.95(7)
O8-S2-O6	114.72(8)	O8-S2-O9	111.95(9)
O6-S2-O9	113.25(9)	O8-S2-O7	104.88(8)
O6-S2-O7	106.55(8)	O9-S2-O7	104.40(8)
O13-S3-O11	113.93(9)	O13-S3-O10	113.93(9)
O11-S3-O10	112.29(9)	013-S3-O12	103.37(9)
O11-S3-O12	106.31(9)	O10-S3-O12	105.94(9)
Fe1-O1-Fe2	134.34(7)	S1-O2-Fe2	132.35(8)
S1-O3-Fe1	128.12(7)	C1-N1-C5	119.18(15)
C1-N1-Fe1	124.38(12)	C5-N1-Fe1	115.65(12)
C13-N2-C7	109.60(14)	C13-N2-C6	110.47(14)
C7-N2-C6	112.58(15)	C13-N2-Fe1	107.24(10)
C7-N2-Fe1	110.16(11)	C6-N2-Fe1	106.62(10)
C8-N3-C12	118.84(16)	C8-N3-Fe1	117.34(12)
C12-N3-Fe1	123.15(12)	C18-N4-C14	118.86(15)
C18-N4-Fe1	124.33(12)	C14-N4-Fe1	116.74(11)
C19-N5-C23	119.51(16)	C19-N5-Fe2	124.89(13)
C23-N5-Fe2	115.52(12)	C31-N6-C24	112.52(14)
C31-N6-C25	111.11(14)	C24-N6-C25	110.54(14)
C31-N6-Fe2	105.28(10)	C24-N6-Fe2	104.77(10)
C25-N6-Fe2	112.38(10)	C36-N7-C32	119.22(15)
C36-N7-Fe2	124.64(12)	C32-N7-Fe2	115.84(11)
C26-N8-C30	118.55(16)	C26-N8-Fe2	116.03(12)
C30-N8-Fe2	124.76(12)	N1-C1-C2	122.36(17)
C1-C2-C3	118.46(17)	C4-C3-C2	119.63(17)
C3-C4-C5	118.58(17)	N1-C5-C4	121.71(16)
N1-C5-C6	116.99(16)	C4-C5-C6	121.16(16)
N2-C6-C5	111.73(15)	N2-C7-C8	114.80(15)
N3-C8-C9	121.70(17)	N3-C8-C7	117.44(16)
C9-C8-C7	120.81(16)	C10-C9-C8	119.31(18)
C9-C10-C11	118.81(18)	C12-C11-C10	119.01(18)
N3-C12-C11	122.23(17)	N2-C13-C14	110.94(14)
N4-C14-C15	121.54(16)	N4-C14-C13	116.04(15)
C15-C14-C13	122.28(16)	C14-C15-C16	119.25(16)
C17-C16-C15	119.09(17)	C18-C17-C16	118.78(17)

N4-C18-C17	122.35(16)	N5-C19-C20	121.80(18)
C19-C20-C21	118.97(19)	C20-C21-C22	119.27(18)
C23-C22-C21	118.98(18)	N5-C23-C22	121.46(17)
N5-C23-C24	115.29(15)	C22-C23-C24	123.22(17)
N6-C24-C23	107.89(14)	N6-C25-C26	114.13(14)
N8-C26-C27	121.99(17)	N8-C26-C25	117.73(15)
C27-C26-C25	120.24(16)	C28-C27-C26	119.01(18)
C27-C28-C29	119.31(18)	C30-C29-C28	118.37(18)
N8-C30-C29	122.77(17)	N6-C31-C32	109.20(14)
N7-C32-C33	121.81(16)	N7-C32-C31	115.03(15)
C33-C32-C31	123.13(16)	C32-C33-C34	118.61(16)
C35-C34-C33	119.44(16)	C36-C35-C34	119.01(17)
N7-C36-C35	121.83(16)		

Fe1-O1	1.7880(17)	Fe1-O2	2.040(3)
Fe1-O3	1.970(4)	Fe1-N3	2.174(4)
Fe1-N2	2.140(4)	Fe1-N1	2.226(4)
S1-O3	1.501(4)	S1-O4	1.455(4)
S1-O5	1.433(5)	S1-O6	1.457(5)
O2-C2	1.458(6)	O1-Fe1a	1.7880(17)
O8-C17	1.366(10)	O9-C18B	1.366(10)
O9-C18A	1.46(2)	C19-O20	1.01(3)
O19-C20	1.01(3)	N1-C1	1.477(6)
N1-C11	1.480(6)	N1-C5	1.490(6)
N2-C16	1.331(7)	N2-C12	1.358(6)
N3-C10	1.337(6)	N3-C6	1.341(6)
C1-C2	1.529(7)	C2-C3	1.522(7)
C2-C4	1.527(7)	C5-C6	1.501(7)
C6-C7	1.400(7)	C7-C8	1.363(8)
C8-C9	1.390(9)	C9-C10	1.371(8)
C11-C12	1.501(7)	C12-C13	1.375(7)
C13-C14	1.390(8)	C14-C15	1.378(8)
C15-C16	1.385(8)		
O1-Fe1-O2	100.91(16)	O1-Fe1-O3	104.79(12)
O2-Fe1-O3	93.16(15)	O1-Fe1-N1	168.02(12)
O1-Fe1-N2	103.45(17)	O1-Fe1-N3	91.34(13)
O2-Fe1-N1	78.24(14)	O2-Fe1-N2	155.10(14)
O2-Fe1-N3	87.89(14)	O3-Fe1-N1	87.19(15)
O3-Fe1-N2	85.60(15)	O3-Fe1-N3	163.30(15)
N1-Fe1-N2	76.86(15)	N1-Fe1-N3	76.69(15)
N2-Fe1-N3	86.47(15)	O3-S1-O4	107.5(2)
O3-S1-O5	108.8(3)	O3-S1-O6	107.9(3)
O4-S1-O5	113.9(3)	O4-S1-O6	108.7(3)
O5-S1-O6	109.9(3)	S1-O3-Fe1	150.7(2)
C2-O2-Fe1	120.1(3)	Fe1-O1-Fe1a	142.1(3)
C1-N1-C11	112.2(4)	C1-N1-C5	113.4(4)
C5-N1-C11	109.5(4)	C1-N1-Fe1	103.7(3)
C11-N1-Fe1	104.3(3)	C5-N1-Fe1	113.4(3)
C12-N2-C16	118.9(4)	C16-N2-Fe1	125.9(3)
C12-N2-Fe1	115.1(3)	C6-N3-C10	118.3(4)
C10-N3-Fe1	123.4(4)	C6-N3-Fe1	118.3(3)
N1-C1-C2	113.1(4)	O2-C2-C3	109.0(4)
C3-C2-C4	109.6(4)	O2-C2-C1	106.3(4)
O2-C2-C4	108.2(4)	C1-C2-C3	115.2(4)
C1-C2-C4	108.3(4)	N1-C5-C6	113.4(4)
N3-C6-C7	121.2(5)	N3-C6-C5	117.9(4)
C5-C6-C7	121.0(5)	C6-C7-C8	119.6(5)

Table S3. Interatomic Distances (Å) and Angles (°) for ${\bf 2}$

C7-C8-C9	119.1(5)	C8-C9-C10	118.2(5)
N3-C10-C9	123.6(5)	N1-C11-C13	109.9(4)
N2-C12-C13	121.6(5)	N2-C12-C11	115.0(4)
C11-C12-C13	123.3(4)	C12-C13-C14	118.7(5)
C13-C14-C15	119.7(5)	C14-C15-C16	118.2(5)
N2-C16-C15	122.6(5)		