Supporting Information

Silver Nanoparticles Supported on Passivated Silica: Preparation and Catalytic Performance in Alkyne Semi-hydrogenation

Emma Oakton, Gianvito Vilé, Daniel Levine, Eva Zocher, David Baudouin, Javier Pérez-Ramírez and Christophe Copéret

a Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, Zürich, Switzerland. E-mail: ccoperet@inorg.chem.ethz.ch
b Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 1, Zürich, Switzerland. E-mail: jpr@chem.ethz.ch
c Université de Lyon, Institut de Chimie de Lyon, UMR C2P2 CNRS-UCBL-ESCPE Lyon, 43 Bd. du 11 Novembre 1918, 69616 Villeurbanne, France.
§ Department of Chemistry, 419 Latimer Hall, University of California, Berkeley, CA 94720-1460, USA.
‡ Wacker Chemie AG, Hanns-Seidel Platz 4, 81737 München, Germany.
Figure S1: 1H MAS NMR of Ag(I)@SiO$_2$ (10 kHz, 400 MHz, ns = 32). Spinning sidebands are denoted by *.

Figure S2: 13C HPDEC MAS NMR of Ag(I)@SiO$_2$ (10 kHz, 400 MHz, ns = 30720)

Figure S3: Zoom in of IR spectra of Ag$_{NP}$@SiO$_2$-TMS showing N-H vibration region
Figure S4: Conversion (X) of propyne and selectivity (S) towards propene versus a) average particle diameter determined by sieving (d_p) and b) total flow (F_{tot}). The influence of the average particle size was studied with 0.2 g of catalyst (sieve fraction = 0.1-0.3 mm, 0.2-0.4 mm, and 0.2-0.6 mm), at $T = 200$ °C, $P = 1$ bar, $H_2/C_3H_4 = 25$, τ (contact time) = 0.07 s. The influence of the flow rate was studied with variable catalyst mass (sieve fraction = 0.2-0.4 mm), keeping $\tau = 0.07$ s, at $T = 200$ °C, $P = 1$ bar, $H_2/C_3H_4 = 25$.
Figure S5: Catalytic activity and selectivity for the semi-hydrogenation of propyne for Ag$_{\text{NP}}$@SiO$_2$-TMS and Ag$_{\text{NP}}$@SiO$_2$-OH at 75% propyne conversion.

Figure S6: TEM images of a) Ag$_{\text{NP}}$@SiO$_2$-TMS and b) Ag$_{\text{NP}}$@SiO$_2$-OH after catalysis.
Figure S7: H$_2$ adsorption isotherms at 0 °C for a) Ag$_{NP}$@SiO$_2$-OH and b) Ag$_{NP}$@SiO$_2$-TMS.
Figure S8: C$_3$H$_4$ adsorption isotherms at 0 °C for a) Ag$_{\text{NP}}$@SiO$_2$-OH and b) Ag$_{\text{NP}}$@SiO$_2$-TMS