Structure and energetics of arsenic(III) oxide intercalated by ionic azides Supporting Information

Piotr A. Guńka,*,[†] Karol Kraszewski,[†] Yu-Sheng Chen,[‡] and Janusz Zachara[†]

Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland, and ChemMatCARS, University of Chicago, Advanced Photon Source, Argonne, Illinois 60439, United States

E-mail: piogun@ch.pw.edu.pl

List of Figures

S1	Powder diffraction patterns of compounds 1 and 2	3
S2	Equivalent isotropic displacement parameters and unit cell volume as a func-	
	tion of X-ray dose for compound 2	5
S3	Experimental Raman spectra of compounds 1 and 2 in the whole measured	
	range	8
*To w †War	whom correspondence should be addressed saw University of Technology	

[‡]ChemMatCARS

List of Tables

S1	Anisotropic and equivalent isotropic displacement parameters for compound	
	${f 2}$ at various temperatures	4
S2	Formulae to compute interlayer interaction energies:	6
S3	Optimised unit cell parameters and fractional coordinates of atoms for com-	
	pound 1 together with computed energies of bulk structure and extracted	
	layers	6
S4	Optimised unit cell parameters and fractional coordinates of atoms for com-	
	pound 2 together with computed energies of bulk structure and extracted	
	layers	7
S5	Calculated frequencies of lattice vibrations at Γ point in compound 2	9
$\mathbf{S6}$	Calculated frequencies of lattice vibrations at Γ point in compound 1	10

Figure S1: Powder diffraction patterns of compounds 1 and 2. Substantial preferred orientation in the direction of (001) crystallographic planes is observed in the sample which is caused by the habit of crystals. Ticks below powder diffraction patterns represent positions of reflections calculated from crystal structure for compound 1 and resulting from Le-Bail fit of a low-temperature unit cell to the room-temperature powder pattern for intercalate 2. The FullPROF programme suite was used for Le-Bail fitting.¹

Table S1: Anisotropic and equivalent isotropic displacement parameters (in 10^3 Å²) for compound **2** at various temperatures. R^2 and slope are the result of linear least squares fit of $U_{\rm eq}$ vs. synchrotron X-ray dose (expressed in arbitrary units). Slope is given to indicate the relative extent of $U_{\rm eq}$ change upon irradiation for every atom.

atom	T/K	U_{11}	U_{22}	U 33	U_{23}	U_{13}	U_{12}	$U_{\rm eq}$
As1	45	6.1(2)	6.1(2)	19.0(4)	0	0	3.07(12)	10.4(2)
	35	6.6(3)	6.6(3)	22.4(5)	0	0	3.30(15)	11.9(3)
	25	7.4(4)	7.4(4)	26.1(6)	0	0	3.70(19)	13.6(4)
	15	8.2(4)	8.2(4)	30.2(7)	0	0	4.1(2)	15.6(4)
	30	9.7(4)	9.7(4)	35.9(8)	0	0	4.9(2)	18.4(5)
			R^2	0.9908			slope	1.85(10)
O1	45	11.2(11)	5.1(14)	19.5(18)	0	0	2.6(7)	12.6(7)
	35	7.1(17)	12.7(14)	23(2)	0	0	3.5(9)	15.0(9)
	25	7(2)	14.1(16)	27(3)	0	0	3.3(10)	16.7(10)
	15	8(2)	15.0(18)	30(3)	0	0	3.9(11)	18.5(11)
	30	9(3)	18(2)	36(4)	0	0	4.5(13)	22.3(13)
			R^2	0.9839			slope	2.2(3)
K1	45	11.8(7)	11.8(7)	26.0(16)	0	0	5.9(4)	16.5(6)
	35	11.9(9)	11.9(9)	30(2)	0	0	6.0(4)	17.9(7)
	25	12.8(10)	12.8(10)	33(2)	0	0	6.4(5)	19.5(8)
	15	13.7(12)	13.7(12)	37(3)	0	0	6.8(6)	21.6(10)
	30	15.8(13)	15.8(13)	42(3)	0	0	7.9(7)	24.5(11)
			R^2	0.9808			slope	1.9(3)
$N1_{middle}$	45	11(3)	11(3)	50(10)	0	0	5.3(16)	24(3)
	35	14(4)	14(4)	49(12)	0	0	7(2)	26(4)
	25	14(5)	14(5)	65(17)	0	0	7(3)	31(5)
	15	18(6)	18(6)	68(19)	0	0	9(3)	34(6)
	30	23(7)	23(7)	70(20)	0	0	11(4)	37(6)
			R^2	0.9870			slope	3.3(14)
$N2_{terminal}$	45	31(4)	31(4)	54(9)	0	0	15.4(18)	38(3)
	35	34(5)	34(5)	72(13)	0	0	17(2)	47(4)
	25	44(6)	44(6)	65(15)	0	0	22(3)	51(5)
	15	48(8)	48(8)	80(19)	0	0	24(4)	59(6)
	30	52(9)	52(9)	110(30)	0	0	26(5)	70(8)
			R^2	0.9874			slope	7.3(16)

Figure S2: Equivalent isotropic displacement parameters (top) and unit cell volume (bottom) plotted as a function of synchrotron X-ray dose for compound **2**. Lines are drawn as a guide for the eyes and are a result of a least squares fit. See Table S1 for their slope.

Table S2: Formulae to compute interlayer interaction energies:

$$\begin{cases} E_{AC} = \mathcal{E}_{0} - \mathcal{E}_{LCLA.a} - \mathcal{E}_{CLAL.b} - \mathcal{E}_{CLA.c} + \mathcal{E}_{L.c} \\ E_{CA} = \mathcal{E}_{0} - \mathcal{E}_{LALC.a} - \mathcal{E}_{ALCL.b} - \mathcal{E}_{ALC.d} + \mathcal{E}_{L.d} \\ E_{LL.O} = \mathcal{E}_{LL.O} - \mathcal{E}_{L.c} - \mathcal{E}_{L.d} \\ E_{LL.As} = \mathcal{E}_{LL.As} - \mathcal{E}_{L.c} - \mathcal{E}_{L.d} \\ E_{CL} = \mathcal{E}_{ALCL.b} - \mathcal{E}_{ALC.d} - \mathcal{E}_{LL.O} + \mathcal{E}_{L.c} \\ E_{LC} = \mathcal{E}_{LCLA.a} - \mathcal{E}_{CLA.c} - \mathcal{E}_{LL.O} + \mathcal{E}_{L.d} \\ E_{AL} = \mathcal{E}_{CLAL.b} - \mathcal{E}_{CLA.c} - \mathcal{E}_{LL.As} + \mathcal{E}_{L.d} \\ E_{LA} = \mathcal{E}_{LALC.a} - \mathcal{E}_{ALC.d} - \mathcal{E}_{LL.As} + \mathcal{E}_{L.c} \end{cases}$$

Table S3: Optimised unit cell parameters and fractional coordinates of atoms for compound 1 together with computed B3LYP-D* energies of bulk structure and extracted layers. \mathscr{E} is stands for energy; \mathscr{E}^{c} is the BSSE-corrected energy value (i.e. energy of layers computed along with ghost atoms). Energy values are given per unit cell.

		-			
		atom	x	y	2
		As	3.33333E - 001	-3.33333E-001	$2.68234 \mathrm{E}{-001}$
		As	$3.33333E{-}001$	-3.33333E-001	$-2.70928\mathrm{E}{-001}$
		Ο	$-4.96769 \mathrm{E}{-001}$	$5.55112 \mathrm{E}{-017}$	$1.64290 \mathrm{E}{-001}$
P31m		Ο	$4.84493 \mathrm{E}{-001}$	-2.77556E - 017	$-1.66136\mathrm{E}{-001}$
a = 5.33034 Å	Ι.	Ν	0	0	$-3.76843\mathrm{E}{-001}$
c = 9.27083 Å	1	Ν	0	0	$4.94368E{-}001$
		Ν	0	0	$3.65688E{-}001$
		Ν	0	0	$5.37610\mathrm{E}{-003}$
		Η	0	0	$1.15146E{-}001$
		Η	0	$1.81386E{-}001$	$-3.09757 \mathrm{E}{-002}$
			& /Ha	€ ^C /Ha	
		bulk	· · · · · · · · · · · · · · · · · · ·	-9616.0171206	99
	a	LALC	-9615.895039513	-9615.9017479	13
		LCLA	-9615.908679925	-9615.9167879	99
	b	CLAL	-9615.901918748	-9615.9072804	28
		ALCL	-9615.908735784	-9615.9170127	83
	c	CLA	-4918.588873702	-4918.5961259	01
		L	-4697.295896109	-4697.3010681	84
	d	ALC	-4918.582929431	-4918.5907832	60
		L	-4697.295068098	-4697.3006291	57
		LL_O	-9394.600539905	-9394.6112406	84
		LL_As	-9394.596355260	-9394.6076561	29

Table S4: Optimised unit cell parameters and fractional coordinates of atoms for compound **2** together with computed B3LYP-D* energies of bulk structure and extracted layers. \mathscr{E} is stands for energy; \mathscr{E}^{c} is BSSE-corrected energy (i.e. energy of layers computed along with ghost atoms). Energy values are given per unit cell.

	_	atom	x	y	z
	_	As	3.33333E - 001	-3.33333E - 001	2.68874E - 001
P6/mmm		Ο	$5.00000 \mathrm{E}{-001}$	$-2.77556\mathrm{E}{-}017$	$1.63013E{-}001$
a = 5.31864	Å	Ν	0	0	$5.00000 \mathrm{E}{-001}$
c = 9.16580	Å	Ν	0	0	$3.69729E{-}001$
		Κ	0	0	0
			€ /Ha	\mathscr{E}^{C} /Ha	
	bulk	Σ.		-10158.83315694	7
	LAL	C -1	0158.704874467	-10158.71328406	54
	LCL	A -1	0158.722900556	-10158.73109825	6
	CLA	<i>۱</i> –	5461.391840756	-5461.40165734	3
	L		4697.295116943	-4697.29989960	9
	LL_() –	9394.599797011	-9394.60946028	33
	LL_A	us —	9394.595675481	-9394.60685468	31

Figure S3: Experimental Raman spectra of compounds 1 and 2 in the whole measured range.

Eigenvalues / Ha ²	Wavenumber $/\mathrm{cm}^{-1}$	Symmetry	IR	Intensity _{IR} /km/mol	Raman
$-2.62 \text{E}{-009}$	-11	A_{2u}	А	0	Ι
$3.61 \mathrm{E}{-009}$	13	E_{1u}	А	1	Ι
$1.62 E{-}008$	28	E_{1g}	Ι	0	А
$8.16E{-}008$	63	E_{1g}	Ι	0	А
$1.94\mathrm{E}{-007}$	97	A_{1g}	Ι	0	А
$2.45\mathrm{E}{-007}$	109	$A_{2\mathrm{u}}$	А	62	Ι
$2.46E{-}007$	109	E_{1u}	А	420	Ι
$3.81\mathrm{E}{-007}$	136	B_{2g}	Ι	0	Ι
$4.07\mathrm{E}{-007}$	140	B_{1u}	Ι	0	Ι
$4.19\mathrm{E}{-007}$	142	E_{1u}	А	23	Ι
$4.89 E{-}007$	154	A_{2u}	А	34	Ι
$5.78\mathrm{E}{-007}$	167	E_{2u}	Ι	0	Ι
$7.11\mathrm{E}{-007}$	185	E_{2g}	Ι	0	А
$1.06E{-}006$	226	B_{1g}	Ι	0	Ι
$1.17 E{-}006$	237	B_{2u}	Ι	0	Ι
$2.10 E{-}006$	318	E_{1g}	Ι	0	А
$2.14\mathrm{E}{-006}$	321	E_{1u}	А	850	Ι
$5.85\mathrm{E}{-006}$	531	E_{2u}	Ι	0	Ι
$6.39 E{-}006$	555	E_{2g}	Ι	0	А
$7.64 \mathrm{E}{-006}$	607	E_{1g}	Ι	0	А
$7.72 E{-}006$	610	E_{1u}	А	5167	Ι
$8.40E{-}006$	636	A_{2u}	А	663	Ι
$8.61E{-}006$	644	E_{1u}	А	15	Ι
$9.64 \mathrm{E}{-006}$	682	A_{1g}	Ι	0	А
$1.34\mathrm{E}{-005}$	804	B_{1g}	Ι	0	Ι
$1.40E{-}005$	820	$B_{2\mathbf{u}}$	Ι	0	Ι
$3.63\mathrm{E}{-005}$	1323	A_{1g}	Ι	0	А
$8.81E{-}005$	2060	A_{2u}	А	2093	Ι

Table S5: Calculated frequencies of lattice vibrations at Γ point in compound ${\bf 2}.$

A and I denote active and inactive, respectively.

Eigenvalues / Ha ²	Wavenumber $/\mathrm{cm}^{-1}$	Symmetry	IR	Intensity _{IR} $/\rm{km/mol}$	Raman
-3.09E-010	-4	E	А	0	А
$1.41E{-}009$	8	A_1	А	0	А
$6.62 \mathrm{E}{-009}$	18	E	А	3	А
$6.30 \mathrm{E}{-008}$	55	E	А	13	А
$1.54\mathrm{E}{-007}$	86	A_1	А	3	А
$1.83E{-}007$	94	E	А	355	А
$3.02 \mathrm{E}{-}007$	121	A_1	А	64	А
$4.98 \mathrm{E}{-007}$	155	A_1	А	0	А
$5.77\mathrm{E}{-007}$	167	A_1	А	3	А
$5.82 E{-}007$	167	E	А	0	А
$6.57\mathrm{E}{-007}$	178	E	А	0	А
$8.16 E{-}007$	198	E	А	0	А
$8.44E{-}007$	202	A_1	А	182	А
$1.01E{-}006$	221	A_2	Ι	0	Ι
$1.13E{-}006$	234	E	А	0	А
$1.31E{-}006$	251	A_2	Ι	181	Ι
$2.08E{-}006$	317	E	А	75	А
$2.25 \mathrm{E}{-006}$	329	E	А	730	А
$2.62E{-}006$	355	A_2	Ι	0	Ι
$5.78 \mathrm{E}{-006}$	528	E	А	11	А
$6.19 \mathrm{E}{-006}$	546	E	А	4	А
$7.36E{-}006$	595	E	А	2090	А
$7.66 \mathrm{E}{-006}$	607	E	А	3316	А
$8.28E{-}006$	632	A_1	А	746	А
$8.40E{-}006$	636	E	А	2	А
$9.52 \mathrm{E}{-006}$	677	A_1	А	0	А
$1.37 E{-}005$	812	A_2	Ι	0	Ι
$1.42E{-}005$	827	A_2	Ι	0	Ι
$3.65\mathrm{E}{-005}$	1325	A_1	А	0	А
$4.64 \mathrm{E}{-005}$	1495	E	А	813	А
$4.64 \mathrm{E}{-005}$	1496	A_1	А	427	А
$6.22 \mathrm{E}{-005}$	1730	E	А	2	А
$8.78 E{-}005$	2056	A_1	А	2127	А
$2.34E{-}004$	3359	A_1	А	252	А
$2.43E{-}004$	3422	Ē	А	1081	А
$2.54\mathrm{E}{-004}$	3498	A_1	А	646	А

Table S6: Calculated frequencies of lattice vibrations at Γ point in compound **1**. The P31m space group was used to circumvent ammonium cation disorder.

A and I denote active and inactive, respectively.

References

(1) Roisnel, T.; Rodriguez-Carvajal, J. FullProf.98 and WinPLOTR. 1998.