Experimental Determination of Redox Cooperativity and Electronic Structure in Catalytically Active Cu-Fe and Zn-Fe Heterobimetallic Complexes

Malkanthi K. Karunananda, Francisco X. Vázquez, E. Ercan Alp, Wenli Bi, Soma Chattopadhyay, Tomohiro Shibata, Neal P. Mankad

Supporting Information

Table of Contents

Figure S1: Mössbauer data (black) and fit (red) for (IMes)CuFp
Figure S2: Mössbauer data (black) and fit (red) for (IPr)(Cl)ZnFp
Figure S3: Mössbauer data (black), fit (red), site 1(blue) and site 2 (green) for K^+Fp^-
Figure S4: Mössbauer data (black) and fit (red) for [K(18-crown-6)₂][Fp]
Figure S5 : Fe K-edge spectrum for Fe foil
Figure S6 : Fe K-edge spectrum for FeCl₂
Figure S7 : Fe K-edge spectrum for FeCl₃
Figure S8 : Fe K-edge spectrum for K^+Fp^-
Figure S9 : Fe K-edge spectrum for FpI
Figure S10 : Fe K-edge spectrum for FpMe
Figure S11 : Fe K-edge spectrum for (IPr)CuFp
Figure S12 : Fe K-edge spectrum for (IMes)CuFp
Figure S13 : Fe K-edge spectrum for (IPr)(Cl)ZnFp
Figure S14 : Fe K-edge spectrum for Fp₂
Figure S15 : Cu K-edge spectrum for Cu foil
Figure S16 : Cu K-edge spectrum for CuCl
Figure S17 : Cu K-edge spectrum for CuCl₂
Figure S18: Cu K-edge spectrum for (IPr)CuCl
Figure S19: Cu K-edge spectrum for (IMes)CuCl
Figure S20: Cu K-edge spectrum for (IPr)CuI
Figure S21: Cu K-edge spectrum for (IPr)CuFp
Figure S22: Cu K-edge spectrum for (IMes)CuFp
Figure S23: Cu K-edge spectrum for (IPr)CuMp
Figure S24: Zn K-edge spectrum for Zn foil
Figure S25: Zn K-edge spectrum for ZnCl$_2$
Figure S26: Zn K-edge spectrum for (IPr)ZnCl$_2$.THF
Figure S27: Zn K-edge spectrum for (IPr)(Cl)ZnFp
Figure S28: Fe K-edge: Plot of 1st derivate of normalized intensity for Fe foil
Figure S29: Fe K-edge: Plot of 1st derivate of normalized intensity for FeCl$_2$
Figure S30: Fe K-edge: Plot of 1st derivate of normalized intensity for FeCl$_3$
Figure S31: Fe K-edge: Plot of 1st derivate of normalized intensity for K$^+$Fp$^-$
Figure S32: Fe K-edge: Plot of 1st derivate of normalized intensity for FpI
Figure S33: Fe K-edge: Plot of 1st derivate of normalized intensity for FpMe
Figure S34: Fe K-edge: Plot of 1st derivate of normalized intensity for (IPr)CuFp
Figure S35: Fe K-edge: Plot of 1st derivate of normalized intensity for (IMes)CuFp
Figure S36: Fe K-edge: Plot of 1st derivate of normalized intensity for (IPr)(Cl)ZnFp
Figure S37: Fe K-edge: Plot of 1st derivate of normalized intensity for Fp$_2$
Figure S38: Zn K-edge: Plot of 1st derivate of normalized intensity for Zn foil
Figure S39: Zn K-edge: Plot of 1st derivate of normalized intensity for ZnCl$_2$
Figure S40: Zn K-edge: Plot of 1st derivate of normalized intensity for (IPr)ZnCl$_2$.THF
Figure S41: Zn K-edge: Plot of 1st derivate of normalized intensity for (IPr)(Cl)ZnFp
Figure S42: Fe K-edge air oxidation monitoring of bimetallic complexes containing Fe and comparison with Fp$_2$ dimer: Fe K-edge spectra of the Fp$_2$ dimer (red) & (IPr)CuFp before oxidation (green) and after oxidation (blue). The spectra of (IMes)CuFp & (IPr)(Cl)ZnFp after oxidation also matched the spectrum of the Fp$_2$ dimer
Figure S43: Cu K-edge air oxidation monitoring of (IPr)CuFp: Cu K-edge spectra of (IPr)CuFp before oxidation (red) and after oxidation (blue)
Figure S44: Cu K-edge air oxidation monitoring of (IMes)CuFp: Cu K-edge spectra of (IMes)CuFp before oxidation (red) and after oxidation (blue)

Figure S45: Cu K-edge air oxidation monitoring of (IPr)CuMp: Cu K-edge spectra of (IPr)CuMp before oxidation (red) and after oxidation (blue)

Figure S46: Zn K-edge air oxidation monitoring of (IPr)(Cl)ZnFp: Zn K-edge spectra of (IPr)(Cl)ZnFp before oxidation (green) and after oxidation (blue)

Figure S47: 1H NMR of [K(18-crown-6)$_2$][Fp] in CD$_3$CN (400 MHz)

Figure S48: 13C NMR of [K(18-crown-6)$_2$][Fp] in CD$_3$CN (400 MHz)

Figure S49: IR Spectrum of [K(18-crown-6)$_2$][Fp]

Figure S50: 1H NMR of (IPr)CuFp in C$_6$D$_6$ (400 MHz)

Figure S51: 1H NMR of (IMes)CuFp in C$_6$D$_6$ (400 MHz)

Figure S52: 1H NMR of (IPr)ClZnFp in C$_6$D$_6$ (400 MHz)

Table S1. Mössbauer parameters from DFT calculations

Figure S53: Fitting used for quadrupole splitting calculations

Figure S54: Fitting used for isomer shift calculations

Figure S55: Calculated electron density plots for the two Fe centers in Fp$_2$

Figure S56: Monitoring radiation damage: Fe K-edge spectra for (IPr)CuFp – scan 1 (blue) scan 2 (red) and scan 3 (green)

Figure S57: Monitoring radiation damage: Fe K-edge spectra for (IMes)CuFp – scan 1 (blue) scan 2 (red) and scan 3 (green)

Figure S58: Monitoring radiation damage: Fe K-edge spectra for (IPr)(Cl)ZnFp – scan 1 (blue) scan 2 (red) and scan 3 (green)

Figure S59: Monitoring radiation damage: Cu K-edge spectra for (IPr)CuFp – scan 1 (blue) scan 2 (red) and scan 3 (green)

Figure S60: Monitoring radiation damage: Cu K-edge spectra for (IMes)CuFp – scan 1 (blue) scan 2 (red) and scan 3 (green)

Figure S61: Monitoring radiation damage: Cu K-edge spectra for (IPr)CuMp – scan 1 (blue) scan 2 (red) and scan 3 (green)

Figure S62: Monitoring radiation damage: Zn K-edge spectrum for (IPr)(Cl)ZnFp – scan 1 (blue) scan 2 (red) and scan 3 (green)

Figure S63: Deconvoluted Cu K-edge spectrum for (IPr)CuFp

Figure S64: Deconvoluted Cu K-edge spectrum for (IMes)CuFp
Figure S65: Deconvoluted Cu K-edge spectrum for (IPr)CuMn
Figure S66: Deconvoluted Cu K-edge spectrum for (IMes)CuCl
Figure S67: Deconvoluted Cu K-edge spectrum for (IPr)Cul
Figure S68: Deconvoluted Cu K-edge spectrum for (IPr)CuCl
Table S2: Deconvolution parameters used for XAS spectra analysis using Athena software
Figure S69: IR Spectrum of Fp₂
Figure S70: IR Spectrum of K’Fp⁻
Figure S1: Mössbauer data (black) and fit (red) for (IMes)CuFp

Figure S2: Mössbauer data (black) and fit (red) for (IPr)(Cl)ZnFp
Figure S3: Mössbauer data (black), fit (red), site 1 (blue) and site 2 (green) for K$^+$Fp$^-$

Figure S4: Mössbauer data (black) and fit (red) for [K(18-crown-6)$_2$][Fp]
Figure S5: Fe K-edge spectrum for Fe foil

Figure S6: Fe K-edge spectrum for FeCl$_2$
Figure S7: Fe K-edge spectrum for FeCl$_3$.

Figure S8: Fe K-edge spectrum for K$^+$Fp$^-$.
Figure S9: Fe K-edge spectrum for FpI

Figure S10: Fe K-edge spectrum for FpMe
Figure S11: Fe K-edge spectrum for (IPr)CuFp

Figure S12: Fe K-edge spectrum for (IMes)CuFp
Figure S13: Fe K-edge spectrum for (IPr)(Cl)ZnFp

Figure S14: Fe K-edge spectrum for Fp₂
Figure S15: Cu K-edge spectrum for Cu foil

Figure S16: Cu K-edge spectrum for CuCl
Figure S17: Cu K-edge spectrum for CuCl₂

Figure S18: Cu K-edge spectrum for (IPr)CuCl
Figure S19: Cu K-edge spectrum for (IMes)CuCl

Figure S20: Cu K-edge spectrum for (IPr)CuI
Figure S21: Cu K-edge spectrum for (IPr)CuFp

Figure S22: Cu K-edge spectrum for (IMes)CuFp
Figure S23: Cu K-edge spectrum for (IPr)CuMp

Figure S24: Zn K-edge spectrum for Zn foil
Figure S25: Zn K-edge spectrum for ZnCl$_2$

Figure S26: Zn K-edge spectrum for (IPr)ZnCl$_2$·THF
Figure S27: Zn K-edge spectrum for (IPr)(Cl)ZnFp

Figure S28: Fe K-edge: Plot of 1st derivate of normalized intensity for Fe foil
Figure S29: Fe K-edge: Plot of 1st derivate of normalized intensity for FeCl₂

Figure S30: Fe K-edge: Plot of 1st derivate of normalized intensity for FeCl₃
Figure S31: Fe K-edge: Plot of 1st derivate of normalized intensity for K-Fp.

Figure S32: Fe K-edge: Plot of 1st derivate of normalized intensity for FpI.
Figure S33: Fe K-edge: Plot of 1st derivative of normalized intensity for FpMe

Figure S34: Fe K-edge: Plot of 1st derivative of normalized intensity for (IPr)CuFp
Figure S35: Fe K-edge: Plot of 1st derivative of normalized intensity for (IMes)CuFp

Figure S36: Fe K-edge: Plot of 1st derivative of normalized intensity for (IPr)(Cl)ZnFp
Figure S37: Fe K-edge: Plot of 1st derivate of normalized intensity for Fp₂

Figure S38: Zn K-edge: Plot of 1st derivate of normalized intensity for Zn foil
Figure S39: Zn K-edge: Plot of 1st derivate of normalized intensity for ZnCl₂

Figure S40: Zn K-edge: Plot of 1st derivate of normalized intensity for (IPr)ZnCl₂·THF
Figure S41: Zn K-edge: Plot of 1st derivative of normalized intensity for (IPr)(Cl)ZnFp

Figure S42: Fe K-edge air oxidation monitoring of bimetallic complexes containing Fe and comparison with Fp₂ dimer: Fe K-edge spectra of the Fp₂ dimer (red) & (IPr)CuFp before oxidation (green) and after oxidation (blue). The spectra of (IMes)CuFp & (IPr)(Cl)ZnFp after oxidation also matched the spectrum of the Fp₂ dimer.
Figure S43: Cu K-edge air oxidation monitoring of (IPr)CuFp: Cu K-edge spectra of (IPr)CuFp before oxidation (red) and after oxidation (blue)

Figure S44: Cu K-edge air oxidation monitoring of (IMes)CuFp: Cu K-edge spectra of (IMes)CuFp before oxidation (red) and after oxidation (blue)
Figure S45: Cu K-edge air oxidation monitoring of (IPr)CuMp: Cu K-edge spectra of (IPr)CuMp before oxidation (red) and after oxidation (blue).

Figure S46: Zn K-edge air oxidation monitoring of (IPr)(Cl)ZnFp: Zn K-edge spectra of (IPr)(Cl)ZnFp before oxidation (green) and after oxidation (blue).
Figure S47: 1H NMR of $[\text{K}(18\text{-crown-6})_2][\text{Fp}]$ in CD$_3$CN (400 MHz)

Figure S48: 13C NMR of $[\text{K}(18\text{-crown-6})_2][\text{Fp}]$ in CD$_3$CN (400 MHz)
Figure S49: IR Spectrum of [K(18-crown-6)₂][Fp]

Figure S50: H¹ NMR of (IPr)CuFp in C₆D₆ (400 MHz) *Extra peaks – Grease and Silicon Grease*
Figure S51: H1 NMR of (IMes)CuFp in C\textsubscript{6}D\textsubscript{6} (400 MHz)

Figure S52: H1 NMR of (IPr)ClZnFp in C\textsubscript{6}D\textsubscript{6} (400 MHz) *Extra peaks – Diethyl ether and Grease
Table S1. Mössbauer parameters from DFT calculations

<table>
<thead>
<tr>
<th>Complex</th>
<th>Q (barn)</th>
<th>η (a.u.)</th>
<th>V_z (mm/s)</th>
<th>ΔE_Q^{calc} (mm/s)</th>
<th>$\rho(0)$ (e/a_0^2)</th>
<th>α(mm/s a_0^2/e)</th>
<th>δ_0 (mm/s)</th>
<th>δ^{calc} (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fp$_2$</td>
<td>0.182</td>
<td>0.835</td>
<td>0.782</td>
<td>1.59</td>
<td>1.20</td>
<td>0.164</td>
<td>1903</td>
<td>0.0971</td>
</tr>
<tr>
<td>Fpl</td>
<td>0.182</td>
<td>-</td>
<td>0.860</td>
<td>1.76</td>
<td>1.35</td>
<td>0.164</td>
<td>1903</td>
<td>0.122</td>
</tr>
<tr>
<td>FpMe</td>
<td>0.182</td>
<td>0.684</td>
<td>0.965</td>
<td>1.90</td>
<td>0.537</td>
<td>0.164</td>
<td>1903</td>
<td>-0.0107</td>
</tr>
<tr>
<td>(IMe)CuFp</td>
<td>0.0494</td>
<td>0.147</td>
<td>1.53</td>
<td>0.768</td>
<td>0.144</td>
<td>0.108</td>
<td>1250</td>
<td>0.305</td>
</tr>
<tr>
<td>(IMe)(Cl)ZnFp</td>
<td>0.0494</td>
<td>0.237</td>
<td>1.41</td>
<td>0.711</td>
<td>1.26</td>
<td>0.108</td>
<td>1250</td>
<td>0.425</td>
</tr>
</tbody>
</table>

Figure S53: Fitting used for quadrupole splitting calculations
Figure S54: Fitting used for isomer shift calculations

Figure S55: Calculated electron density plots for the two Fe centers in Fp$_2$
Figure S56: Monitoring radiation damage: Fe K-edge spectra for (IPr)CuFp – scan 1 (blue) scan 2 (red) and scan 3 (green)

Figure S57: Monitoring radiation damage: Fe K-edge spectra for (IMes)CuFp – scan 1 (blue) scan 2 (red) and scan 3 (green)
Figure S58: Monitoring radiation damage: Fe K-edge spectra for (IPr)(Cl)ZnFp – scan 1 (blue) scan 2 (red) and scan 3 (green)

Figure S59: Monitoring radiation damage: Cu K-edge spectra for (IPr)CuFp – scan 1 (blue) scan 2 (red) and scan 3 (green)
Figure S60: Monitoring radiation damage: Cu K-edge spectra for (IMes)CuFp – scan 1 (blue) scan 2 (red) and scan 3 (green).

Figure S61: Monitoring radiation damage: Cu K-edge spectra for (IPr)CuMp – scan 1 (blue) scan 2 (red) and scan 3 (green).
Figure S62: Monitoring radiation damage: Zn K-edge spectrum for (IPr)(Cl)ZnFp – scan 1 (blue) scan 2 (red) and scan 3 (green)

Figure S63: Deconvoluted Cu K-edge spectrum for (IPr)CuFp
Figure S64: Deconvoluted Cu K-edge spectrum for (IMes)CuFp.

Figure S65: Deconvoluted Cu K-edge spectrum for (IPr)CuMp.
Figure S66: Deconvoluted Cu K-edge spectrum for (IMes)CuCl

Figure S67: Deconvoluted Cu K-edge spectrum for (IPr)CuI
Figure S68: Deconvoluted Cu K-edge spectrum for (IPr)CuCl

Table S2: Deconvolution parameters used for XAS spectra analysis using Athena software

<table>
<thead>
<tr>
<th>Complex</th>
<th>Fit range</th>
<th>Arctangent</th>
<th>Lorentzian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Height</td>
<td>Center</td>
<td>Width</td>
</tr>
<tr>
<td>(IPr)CuFp</td>
<td>(-12)-12</td>
<td>1.30</td>
<td>8990.0</td>
</tr>
<tr>
<td>(IMes)CuFp</td>
<td>(-12)-12</td>
<td>1.30</td>
<td>8990.0</td>
</tr>
<tr>
<td>(IPr)CuMp</td>
<td>(-12)-12</td>
<td>1.17</td>
<td>8989.3</td>
</tr>
<tr>
<td>(IMes)CuCl</td>
<td>(-12)-12</td>
<td>1.20</td>
<td>8990.0</td>
</tr>
<tr>
<td>(IPr)CuI</td>
<td>(-12)-12</td>
<td>1.20</td>
<td>8990.0</td>
</tr>
<tr>
<td>(IPr)CuCl</td>
<td>(-12)-12</td>
<td>1.10</td>
<td>8990.0</td>
</tr>
</tbody>
</table>

Figure S69: IR Spectrum of Fp₂

Figure S70: IR Spectrum of K⁺Fp⁻