Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Probing the photophysical capability of mono and bis(cyclometallated) Fe(II) polypyridine complexes using inexpensive ground state DFT.

Isabelle M. Dixon,^{a*} Shehryar Khan,^{ab} Fabienne Alary,^a Martial Boggio-Pasqua^a and Jean-Louis Heully^a

^a Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Paul Sabatier-Toulouse III, Toulouse, France

^b Current Address : Department of Physics, Stockholm University, Sweden

1. Computational methods	p 2
2. Selection of the functional used for TDDFT (FigS1, Table S1)	р3
3. Effect of the vibrations at 293 K on the TDDFT spectra (Fig. S2)	p 4
4. Absolute energy, cartesian coordinates, computed UV-Vis absorption spectrum a nature of the main transitions and selected orbitals for :	ınd
a) complex 1 (Fig. S3, Tables S2, S3)	p 5
b) complex 2 (Fig. S4, Tables S4, S5)	p 9
c) complex 3 (Fig. S5, Tables S6, S7)	p 13
d) complex 4 (Fig. S6, Tables S8, S9)	p 19
e) complex 5 (Fig. S7, Tables S10, S11)	p 24
f) complex 6 (Fig. S8, Tables S12, S13)	p 29
g) complex 7 (Fig. S9, Tables S14, S15)	p 35
5. Singlet and triplet excited states at the ground-state geometry (Table S16)	p 42

1. Computational methods

Density Functional Theory (DFT) and time-dependent DFT (TDDFT) calculations were performed using Orca 2.8.¹ Geometries were optimized with the PBE0 functional,² using the def2-TZVP(-f) basis set for all atoms.³ Scalar relativity was included using ZORA and Grimme's empirical dispersion correction VDW ⁴ was used. The revPBE GGA functional was used for the Natural Bond Orbital analysis (NBO 6.0)⁵ available in the Orca 3.0.1 package.

Absolute energies were computed through B3LYP* 6 single-point calculations at the PBE0 geometries, which also produced the orbitals shown herein. For the e_g *-like orbitals, the Kohn-Sham orbitals are replaced by the corresponding Pipek-Mezey localized orbitals. The first 100 virtual orbitals were used in the localization procedure performed with the orca_loc program.

The functional used to model the absorption spectra was selected from seven functionals, on the basis of its ability to reproduce the energy and shape of the experimental absorption of complex **1**. TDDFT was then performed on all complexes using the same conditions as before (def2-TZVP(-f) basis set, ZORA scalar relativity, VDW dispersion) using the TPSS non-hybrid functional.⁷ An asymptotic correction was applied and solvent effects were included as a continuum using the COSMO model for dichloromethane. 80 roots were computed but only roots with significant oscillator strength are reported in the Tables. In the orca_asa spectral analysis module, a Σ value of 750 cm⁻¹ was used as broadening factor of the gaussians (corresponding to FWMH=1766.12 cm⁻¹).

Inclusion of the vibrations in the absorption spectra was achieved using the Orca 3.0.1 program with the B3LYP* functional (this type of calculation requires computing the gradient in the excited state, which is not currently implemented for GGA functionals such as TPSS). Scalar relativity with ZORA and the D2 dispersion keyword (corresponding to VDW in Orca 2.8) were used. The independent mode, displaced harmonic oscillator (IMDHO) model was applied. The same broadening factor was used as for the classical (vibration-free) absorption spectra.

¹ F. Neese, *WIREs Comput. Mol. Sci.* **2012**, 2, 73.

² C. Adamo and V. Barone, J. Chem. Phys. **1999**, 110, 6158.

³ D. A. Pantazis, X. Y. Chen, C. R. Landis and F. Neese, J. Chem. Theory Comput. **2008**, 4, 908.

⁴ S. Grimme, J. Comput. Chem. 2006, 27, 1787.

⁵ E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold. http://nbo6.chem.wisc.edu.

⁶ M. Reiher, O. Salomon, B. A. Hess, *Theor. Chem. Acc.* **2001**, *107*, 48, ; M. Reiher, *Inorg. Chem.* **2002**, *41*, 6928.

⁷ V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, *J. Chem. Phys.* **2003**, *119*, 12129.

2. Choice of functional for the TDDFT modelling of the absorption spectrum of 1.

Figure S1 : TDDFT absorption spectrum computed with the seven tested functionals in the 355-755 nm range

Table S1 : Wavelength (nm) and energy (eV) of the second lowest-energy absorption band with the seven tested functionals

	PBE0	B3LYP*	TPSSh	TPSS	OLYP	PBE	BLYP
λ (nm)	394	452	463	520	527	528	530
E (eV)	3.147	2.743	2.678	2.384	2.353	2.348	2.339

Figure S2 : Including vibrations (thick lines) in the calculation of the TDDFT absorption spectra (thin lines) of complexes **1** (top), **5** (centre) and **7** (bottom).

4a. Data on Fe(tpy)₂²⁺ **(1)** (E=-2762.067979397 a.u.)

Fe	5.442593	8.549498	4.751188
Ν	4.644907	6.747158	4.780254
Ν	5.245669	8.350327	6.611916
Ν	6.174570	10.288821	5.321228
Ν	3.692469	9.361225	4.346986
Ν	5.641593	8.754043	2.892160
Ν	7.252601	7.795652	4.555146
С	4.363779	5.977827	3.731250
Η	4.607866	6.392122	2.760760
С	3.793821	4.722251	3.858264
Η	3.583669	4.134678	2.974259
С	3.503552	4.245229	5.126754
Н	3.058030	3.267373	5.260896
С	3.792169	5.040278	6.224351
Н	3.579284	4.700046	7.229201
С	4.361858	6.285023	6.020303
С	4.713485	7.220272	7.090588
С	4.548453	7.043918	8.456089
Η	4.115502	6.133201	8.848249
С	4.949011	8.065965	9.306739
Н	4.828050	7.954716	10.377341
С	5.502782	9.230685	8.791045
Η	5.817467	10.032058	9.446102
С	5.639923	9.343650	7.415798
С	6.186830	10.472948	6.661937
С	6.677376	11.632633	7.236506
Н	6.675928	11.747137	8.313095
С	7.166341	12.635529	6.414855
Η	7.555730	13.552056	6.840739
С	7.147958	12.445111	5.042310
Н	7.517757	13.202958	4.363936
С	6.643970	11.257269	4.538819
Н	6.611333	11.064135	3.473948
С	2.717942	9.639713	5.209302
Н	2.916198	9.391352	6.244487
С	1.518338	10.212420	4.820372
Н	0.757341	10.422173	5.560628
С	1.321002	10.506733	3.480694
Н	0.394864	10.956154	3.143897
С	2.330032	10.218287	2.575996
Н	2.211081	10.435769	1.522511
С	3.503052	9.647053	3.037984
С	4.642042	9.296414	2.188576
С	4.759576	9.468225	0.817622

Η	3.952786	9.903878	0.243514
С	5.937076	9.067558	0.199917
Η	6.054732	9.192340	-0.869659
С	6.964637	8.507071	0.947325
Η	7.885967	8.192100	0.476155
С	6.782044	8.360820	2.314220
С	7.720089	7.795214	3.285363
С	8.969202	7.291649	2.966071
Η	9.312301	7.304914	1.939967
С	9.762854	6.772111	3.976229
Η	10.743096	6.370616	3.750895
С	9.280462	6.773856	5.275392
Η	9.866353	6.377327	6.094103
С	8.021265	7.295506	5.519421
Η	7.603162	7.316964	6.518482

Figure S4 : Computed UV-Vis absorption spectrum in the 235-725 nm range.

Table S2 : Main transitions found in the absorption spectrum

State	Oscillator	Wavelength	Main components	Major character
	strength	(nm)		
1	0.009465965	626.1	133 —> 134,135	MLCT
2	0.009431728	625.2	Fe —> L ₂	
9	0.020960243	546.8	131,132 -> 137	MLCT
10	0.020860162	545.8	Fe —> L ₂	
11	0.101252270	515.9	131 -> 134	MLCT
			132 -> 135	

			Fe —> L ₂	
18	0.036833505	408.8	133 -> 139	MLCT
			Fe —> L ₂	
19	0.022484406	405.8	133 -> 140,141	MLCT
20	0.022042730	405.5	Fe —> L ₂	
31	0.031714153	341.6	131 -> 145	MLCT
			132 -> 144	
			133 —> 142,144	
			Fe —> L ₂	
32	0.068576309	341.3	129 —> 134,135	LC
33	0.065430216	341.0	133 —> 144,145	MLCT
			$L_2 \longrightarrow L_2$	
			Fe —> L ₂	
35	0.172938106	330.2	133 —> 144,145	LC
36	0.169890068	330.0	129,130 -> 134,135	MLCT
			$L_2 \longrightarrow L_2$	
			Fe —> L ₂	
44	0.091286817	306.5	127,128 -> 135	LC
			129 -> 136	MLCT
			130 -> 137	
			131 -> 144	
			132 -> 145	
			$L_2 \longrightarrow L_2$	
			Fe —> L ₂	
55	0.082129823	278.2	129 -> 140,141	LC
56	0.082315379	278.2	127,128 -> 136,137	
			$L_2 \longrightarrow L_2$	
71	0.268128801	265.9	127,128 —> 136,137	LC
72	0.267478097	265.8	129 -> 140,141	
			$L_2 \longrightarrow L_2$	
78	0.140120099	258.0	124 -> 135	LC
			125 -> 134	
			126 -> 137	
			$L_2 \longrightarrow L_2$	

Table S3 : Selected B3LYP* orbitals at the PBE0 geometry (eigenvalues in eV)

4b. Data on Fe(tpy)(NCN)⁺ **(2)** (E=-2745.640140461 a.u.)

Fe	5.432603	8.550271	4.748035
Ν	4.636839	6.758497	4.794284
Ν	5.239912	8.347768	6.621644
Ν	6.157269	10.276787	5.330696
Ν	3.678905	9.372318	4.306290
С	5.637505	8.750639	2.908230
Ν	7.258314	7.793899	4.532054
С	4.345140	5.995466	3.740906
Н	4.584001	6.426891	2.776652
С	3.777691	4.739508	3.866879
Н	3.559506	4.159423	2.979914
С	3.500586	4.250253	5.134681
Н	3.058206	3.270551	5.265234
С	3.798132	5.036397	6.234089
Н	3.596346	4.690922	7.239500
С	4.363849	6.285059	6.033756
С	4.720922	7.211803	7.106568
С	4.577705	7.026137	8.473099
Н	4.155809	6.109887	8.864870
С	4.986535	8.044207	9.325299
Н	4.882990	7.925647	10.396692
С	5.528860	9.213669	8.806973
Н	5.853328	10.012072	9.461139
С	5.644480	9.335529	7.430731
С	6.181031	10.463741	6.672142
С	6.674681	11.625892	7.242384
Н	6.680944	11.738577	8.319198
С	7.153826	12.628011	6.416886
Н	7.545411	13.545609	6.838370
С	7.122945	12.435357	5.043901
Н	7.485008	13.193043	4.361247
С	6.618186	11.247793	4.542728
Н	6.572435	11.042693	3.480583
С	2.713813	9.650044	5.182163
Н	2.927597	9.393968	6.213140
С	1.511220	10.227396	4.820551
Н	0.763065	10.434499	5.574168
С	1.298538	10.529524	3.481965
Н	0.368680	10.984001	3.161217
С	2.290972	10.244518	2.563553
Η	2.163249	10.467096	1.511835
С	3.478945	9.665418	2.992624
С	4.613219	9.312533	2.152334
С	4.761607	9.473099	0.776853

Η	3.973475	9.906442	0.169514
С	5.949796	9.067452	0.172543
Η	6.072150	9.191455	-0.896616
С	6.984057	8.505193	0.918118
Н	7.898254	8.198948	0.419979
С	6.819333	8.348929	2.292271
С	7.747974	7.788455	3.262574
С	9.010416	7.278045	2.986406
Н	9.369935	7.288604	1.965546
С	9.780194	6.765237	4.013100
Н	10.765514	6.362751	3.810891
С	9.271906	6.772427	5.305305
Н	9.838164	6.380690	6.139644
С	8.010441	7.296668	5.513236
Н	7.571400	7.324307	6.503910

Figure S4 : Computed UV-Vis absorption spectrum in the 285-1045 nm range.

Table S4 : Main transitions found in the absorption spectrum (dpb = dipyridylbenzene)

State	Oscillator	Wavelength	Main	Character
	strength	(nm)	components	
5	0.040383249	679.0	132 -> 135	MLCT
			131 -> 134	
			Fe —> tpy	
6	0.024031014	593.6	133 -> 136	MLCT
			Fe —> dpb	
8	0.056436143	559.9	131 -> 136	MLCT

			132 -> 134	MLCT
			$Fe \longrightarrow tnv$	MLCT
			$Fe \longrightarrow dnh$	
13	0.080612033	4933	$131 \longrightarrow 137$	MLCT
10	0.000012000	17010	$133 \rightarrow 138$	
			$Fe \longrightarrow tnv$	
			$Fe \longrightarrow dpb$	
20	0.062974349	454.6	131 —> 139	MLCT
20	0.00237 1013	10 110	$Fe \longrightarrow tnv$	
21	0.032671708	441.7	131 -> 138	MLCT
		1111	131 -> 141	MLCT
			$Fe \longrightarrow tnv$	
			$Fe \longrightarrow dpb$	
24	0.014936180	419.5	$133 \rightarrow 142$	MLCT
	01011700100	11,10	$130 \rightarrow 132$	
			Fe —> tpv	
38	0.172342034	333.5	128 -> 134	LC(tpv)
			126 -> 135	(-F))
			tpv —> tpv	
45	0.117628177	318.4	129 -> 136.138	PBLCT
			130 -> 137	LC(dpb)
			FePh —> dpb	
			FePh —> tpv	
			dpb —> dpb	
54	0.140241435	302.9	128 -> 137	LL'CT
			130 -> 136	LC(dpb)
			126 -> 134	LC(tpy)
			tpy —> dpb	
			dpb —> dpb	
			tpy —> tpy	
55	0.120521925	303.4	128 -> 137	LL'CT
			130 -> 136	LC(dpb)
			tpy —> dpb	
			dpb —> dpb	
68	0.073032113	283.6	126 -> 135	LC(tpy)
			128 -> 139	
			tpy —> tpy	
69	0.053672579	277.3	133 —> 145	MLCT
			124 —> 135	LC(tpy)
			Fe —> dpb	
			dpb+tpy —> tpy	
73	0.046943079	276.3	124 -> 135	LC(tpy)
			123 -> 134	
			dpb+tpy —> tpy	
			NFeN+tpy —>	
		0.500	tpy	
78	0.158794162	270.2	133 -> 147	MLCT
			125 -> 136	LC(dpb)
			130 -> 142	

	Fe —> dpb	
	dpb —> dpb	

	LUM0+9 (-2.78)	LUM0+13 (-1.83)
LUMO (-4.99) НОМО (-7.51)	LUMO+1 (-4.98)	LUMO+2 (-4.31) НОМО-2 (-7.71)
	НОМО-4 (-8.90)	НОМО-5 (-9.20)

Table S5 : Selected B3LYP* orbitals at the PBE0 geometry (eigenvalues in eV)

4c. Data on Fe(tpy)(NNC)⁺ **(3)** (E=-2745.643566699 a.u.)

Fe	5.353748	8.591769	4.770837
Ν	4.598217	6.796601	4.780269
Ν	5.196143	8.375007	6.599418
Ν	6.110347	10.297512	5.324738
Ν	3.602921	9.418829	4.284204
Ν	5.587367	8.783352	2.890710
С	7.140707	7.836094	4.645842
С	4.330810	6.032111	3.721935
Н	4.549058	6.473329	2.757630
С	3.819949	4.752912	3.836466
Н	3.623003	4.172747	2.944637
С	3.575923	4.236910	5.101551
Н	3.179361	3.236953	5.224214
С	3.853560	5.021593	6.205791
Н	3.684438	4.655089	7.209726
С	4.363873	6.295854	6.015550
С	4.723540	7.216191	7.085866
С	4.651077	6.998584	8.452351
Н	4.269223	6.062535	8.838041
С	5.086170	7.999469	9.310416
Н	5.039180	7.852812	10.382124
С	5.595472	9.182700	8.792356
Н	5.957064	9.965116	9.446281
С	5.643364	9.341308	7.416702
С	6.173244	10.471017	6.665701
С	6.718231	11.611730	7.233238
Н	6.756893	11.710463	8.310700
С	7.212383	12.604008	6.406603
Н	7.646904	13.502973	6.825791
С	7.146986	12.421929	5.032392
Н	7.526275	13.168918	4.347373
С	6.591138	11.257507	4.535745
Н	6.530289	11.064391	3.472486
С	2.609330	9.713422	5.119826
Н	2.787380	9.473254	6.161535
С	1.423544	10.288152	4.698217
Η	0.646410	10.510923	5.417582
С	1.261202	10.568157	3.349197
Н	0.346446	11.019468	2.984847
С	2.288552	10.263132	2.473969
Н	2.199001	10.468404	1.415251
С	3.448669	9.688989	2.970504
С	4.605628	9.319004	2.154894
С	4.735756	9.472550	0.785237

Η	3.937235	9.902583	0.196231
С	5.922923	9.054268	0.192874
Н	6.057725	9.160843	-0.876966
С	6.930785	8.502024	0.963671
Н	7.858266	8.172029	0.515361
С	6.742894	8.369804	2.339117
С	7.649666	7.819987	3.328504
С	8.910848	7.309464	3.024052
Н	9.273434	7.309286	2.001383
С	9.699276	6.799436	4.039152
Н	10.680758	6.398194	3.818685
С	9.220858	6.804616	5.346584
Н	9.840110	6.403772	6.142059
С	7.961898	7.316370	5.641312
Н	7.621393	7.302489	6.673510

Figure S5 : Computed UV-Vis absorption spectrum in the 245-845 nm range.

Table S6 : Main transitions found in the absorption spectrum (pbp = phenylbipyridine)

State	Oscillator	Wavelength	Main components	Major character
	strength	(nm)		
1	0.004613815	749.8	133 -> 134	MLCT
			Fe —> tpy	
2	0.008745396	740.7	133 -> 135	MLCT
			Fe —> tpy+pbp	
7	0.031482189	647.6	132 -> 135,136	MLCT
			Fe —> tpy+pbp	

8	0.046458306	597.6	131 -> 135,136	MLCT
			Fe —> tpy+pbp	
9	0.021443859	571.3	133 -> 137	MLCT
			132 -> 134	MLCT
			Fe —> pbp	
			Fe —> tpy	
13	0.019226835	484.7	133 -> 139	MLCT
			132 -> 138	MLCT
			Fe —> tpy	
			Fe —> tpy+pbp	
15	0.062760310	473.4	133 -> 138	MLCT
10	0.000(50545	450.0	Fe —> tpy+pbp	
19	0.038658545	453.2	132 -> 140	MLCT
			133 -> 139	MLCT
			Fe —> tpy	
		450.0	$Fe \longrightarrow tpy+pbp$	
20	0.022556016	452.3	131 -> 138,140	MLCT
	0.040040(00	400.4	Fe —> tpy+pbp	MLCI
23	0.019813633	433.4	130 -> 135,136	LC(pbp)
	0.045004040	400.0	pbp —> tpy+pbp	
28	0.017201843	432.2	129 -> 136	LC(pbp)
	0.040540500		pbp —> tpy+pbp	
30	0.019718522	380.0	132 -> 142	MLCT
			129 -> 135	LC(pbp)
			$133 \longrightarrow 140,143$	
			Fe —> pbp	
			Fe —> tpy	
			re —> tpy+pop	
20	0.0272(0254	251.0	pop —> tpy+pop	L C (h)
39	0.027309354	351.0	130 - 13/,130	LC(рор) МІ СТ
			131 - 2143	MLCI
			pop —> pop	
			pop —> tpy+pop	
40	0.110022002	2256	127 > 124	I C(true)
40	0.110933993	333.0	127 - 7134 120 > 120	
			150 - 159	
			t p y = t p y	
11	0.062475501	2277	122 > 142	MICT
41	0.002475501	557.7	132 - 142 120 > 140	
			130 - 140 121 > 142	
			$131 \longrightarrow 143$	
			$re \rightarrow tpy$	
			$F_{0} = 2 \text{ rby}$	
42	0.061275222	340.7	130 _> 130	
чJ	0.0012/3222	510.7	127 \$ 134	L((tny)
			127 - 7134	по(гру)
			$pop \rightarrow tpy$	
52	0.0771/1500	306.8	129 - 140	
100	0.01/141300	1 300.0	1 1 4 7 - 7 1 4 0	

			125 -> 134	LC(tpy)
			133 -> 146	MLCT
			pbp —> tpy+pbp	
			tpy —> tpy	
			Fe —> tpy	
54	0.048514790	303.3	125 -> 134	LC(tpy)
			129 -> 138	LC(pbp)
			131 -> 145	MLCT
			tpy —> tpy	
			pbp —> pbp+tpy	
			Fe —> pbp	
59	0.028552385	295.6	133 -> 146	MLCT
			Fe —> tpy	
60	0.181094703	292.1	133 -> 145	MLCT
			129 -> 138	LC(pbp)
			Fe —> pbp	
		2227	pbp —> pbp+tpy	
61	0.031572014	290.5	128 -> 139	SBLCT
			127 -> 138	LC(tpy)
			NFeC —> tpy	
		224.4	tpy —> tpy+pbp	
68	0.022550169	281.1	131 -> 144	MC
			128 -> 140	SBLCT
			12/ -> 139	LC(tpy)
			$Fe \longrightarrow FeN_3L$	
			NFeC —> tpy+pbp	
(0	0.000440100	201.0	$tpy \longrightarrow tpy$	
69	0.023443103	281.0	$120 \longrightarrow 139$	SBLUI
			$12/ \rightarrow 130$	LC(tpy)
			try > try php	
70	0.051/50110	270.1	127 > 120	I C(true)
70	0.031430119	279.1	127 - 2139 128 > 140	SBI CT
			120 - 140	SDLCI
			VFoC > try hp	
72	0.050552464	275.3	127 = 140	I C(tny)
12	0.030332404	275.5	$127 \longrightarrow 140$ 126 > 137	LC(upy)
			$120 \rightarrow 137$	ге(рор)
			$r_{py} \rightarrow r_{py} - r_{py}$	
73	0 108868863	273.4	126 -> 137	LC(nhn)
/3	0.100000000	275.1	120 > 137 $133 \longrightarrow 147$	MLCT
			$127 \longrightarrow 140$	LC(tnv)
			pbp —> pbp	==(+,)
			Fe —> pbp	
			tpy —> tpy+php	
75	0.068593025	269.9	129 -> 141	LMCT
			133 -> 148	MLCT
			124 -> 134	LC(tpy)
			pbp —> FeN ₄	
l	l	1	IF	1

			Fe —> tpy	
			pbp+tpy —> tpy	
77	0.034407211	267.2	133 -> 148	MLCT
			132 -> 147	
			Fe —> tpy	
			Fe —> pbp	
78	0.072268722	266.1	133 —> 147	MLCT
			126 -> 140	LL'CT
			126 -> 135,136,137	LC(pbp)
			Fe —> pbp	
			pbp —> pbp+tpy	
			pbp —> pbp	
79	0.079316812	268.6	129 -> 141	LMCT
			124 -> 134	LC(tpy)
			133 -> 148	MLCT
			pbp —> FeN ₄	
			pbp+tpy —> tpy	
			Fe —> tpy	

Table S7 : Selected B3LYP* orbitals at the PBE0 geometry (eigenvalues in eV)

4d. Data on Fe(tpy)(CNC) (4) (E=-2729.110301919 a.u.)

Fe	5.428482	8.550449	4.821167
Ν	4.649703	6.789930	4.815476
Ν	5.244720	8.351525	6.610136
Ν	6.147211	10.252837	5.353106
С	3.692839	9.363927	4.383336
Ν	5.640243	8.756440	2.897334
С	7.233577	7.797615	4.604092
С	4.364750	6.037737	3.747725
Н	4.605172	6.481551	2.790430
С	3.803699	4.782685	3.850157
Н	3.593896	4.216902	2.951768
С	3.518421	4.267734	5.112080
Н	3.079084	3.284115	5.222399
С	3.805318	5.036264	6.220815
Н	3.600654	4.678823	7.221807
С	4.369706	6.293849	6.045903
С	4.720329	7.209180	7.109760
С	4.574973	7.029261	8.474021
Н	4.149192	6.109817	8.855420
С	4.978625	8.042165	9.335720
Н	4.870240	7.922563	10.406265
С	5.523142	9.209338	8.813253
Н	5.847618	10.011780	9.463286
С	5.646787	9.339608	7.441179
С	6.178395	10.457342	6.693495
С	6.675923	11.630606	7.247269
Н	6.684632	11.750599	8.323623
С	7.149869	12.620842	6.412302
Н	7.543971	13.543883	6.819562
С	7.110908	12.408765	5.036651
Н	7.468960	13.157962	4.342344
С	6.605469	11.220557	4.553024
Н	6.554625	11.008317	3.493352
С	2.640140	9.678503	5.241708
Н	2.734801	9.468546	6.304412
С	1.466614	10.255391	4.770000
Η	0.663248	10.492185	5.461211
С	1.309025	10.536972	3.414809
Н	0.392201	10.988500	3.053303
С	2.332802	10.235287	2.534068
Н	2.220400	10.451598	1.475897
С	3.505411	9.657703	3.018328
С	4.639240	9.299082	2.181859
С	4.763896	9.455795	0.804782

Η	3.953062	9.890063	0.235251
С	5.936966	9.044618	0.190956
Η	6.055080	9.159280	-0.881113
С	6.959692	8.486152	0.941903
Н	7.882274	8.158043	0.482281
С	6.782669	8.349838	2.315517
С	7.715755	7.790108	3.280540
С	8.970646	7.282542	2.947347
Н	9.311790	7.289558	1.916719
С	9.781727	6.766132	3.942939
Н	10.759361	6.367110	3.698560
С	9.330347	6.762207	5.260864
Н	9.966607	6.357123	6.041878
С	8.077189	7.271175	5.581296
Н	7.751737	7.253542	6.618909

Figure S6 : Computed UV-Vis absorption spectrum in the 255-1045 nm range.

Table S8 : Main transitions found in the absorption spectrum (dpp = diphenylpyridine)

State	Oscillator	Wavelength	Main components	Major character
	strength	(nm)		
1	0.006907673	849.4	133 -> 134	MLCT
			Fe —> tpy	
2	0.004034654	750.2	132 -> 134	MLCT
			133 -> 135	
			Fe —> tpy	
4	0.035832869	678.6	133 -> 135	MLCT

			132 -> 134	
			Fe —> tpy	
7	0.014604839	596.4	133 -> 137	MLCT
			132 -> 135	
			Fe —> tpy	
			Fe —> dpp	
10	0.010971396	543.8	133 -> 139	MLCT
	0.01010771070	0 1010	132 -> 135	
			$Fe \longrightarrow tnv$	
12	0.023694015	526.1	133 -> 138	MLCT
		02011	132 -> 139	
			$Fe \longrightarrow tnv$	
13	0.017414341	5033	132 -> 138	MLCT
10		00010	$Fe \longrightarrow tnv$	
15	0.069434371	481.0	131 - > 136 139	MLCT
15	0.007131371	101.0	133 -> 139	
			$Fe \longrightarrow dnn$	
			$Fe \longrightarrow tny$	
16	0.011515283	483.2	131 _> 139	МІСТ
10	0.011515205	405.2	$Fe \longrightarrow tnv$	MLCI
17	0 106311320	4754	122_120	МІСТ
17	0.100311320	475.4	122 129	MLCI
			133-130	
21	0.016072155	410 E	122122 > 140	МІСТ
21	0.010073133	410.5	$132,133 \longrightarrow 140$	MLCI
22	0.016700927	400.2	122122 > 140	МІСТ
22	0.010/9903/	409.5	152,155 -> 140	MLCI
24	0.026060000	200.0	re - rpy	
24	0.030900000	390.9	$150 \rightarrow 155$	SDLCI
26	0.020606624	2524	121 > 142	МІСТ
30	0.029080034	352.4	131 -> 142	
			$132 \longrightarrow 140$	
			$125 \longrightarrow 134$	SDLCI
			130 -> 138	
			Fe —> app	
			Fe —> tpy	
			tpy —> tpy	
27	0.017(7)544	240 5	120 × 120	L C (days)
37	0.01/6/2544	349.5	$129 \longrightarrow 136$	LL(app)
			132 -> 141	MC
			app —> app	
A A	0.101020202	240.2	re -> ren4	
44	0.101928399	340.2	130-138	SBLUI
			133-143	
			129-137	
			129-139	LLCT
			CFeC —> tpy	
			Fe —> dpp	
			dpp —> dpp	
			dpp —> tpy	

-				
54	0.135275569	315.5	125-135	LC(tpy)
			124-134	
			tpy —> tpy	
55	0.083612168	315.3	128-139	LL'CT
			131-143	MLCT
			128-137	LC(dpp)
			126-137	
			dpp —> tpy	
			Fe —> dpp	
			dpp —> dpp	
57	0.018562980	312.9	131-144	MLCT
			126-136	LC(dpp)
			127-137	
			133-147	
			Fe —> dpp	
			dpp —> dpp	
			Fe —> tpy	
61	0.021217572	309.9	133-147	MLCT
			127-137	LC(dpp)
			125-137	LL'CT
			Fe —> tpy	
			dpp —> dpp	
			tpy —> dpp	
64	0.038692897	305.4	128-139	LL'CT
			125-136	МС
			132-146	LC(dpp)
			128-137	
			dpp —> tpy	
			tpy —> dpp	
			$Fe \longrightarrow FeC_2$	
			dpp —> dpp	
65	0.051643093	304.3	127-139	LL'CT
			125-137	LC(dpp)
			127-137	MLCT
			133-143	
			dpp —> tpy	
			tpy —> dpp	
			dpp —> dpp	
			Fe —> dpp	
71	0.042498768	292.4	130-140	SBLCT
			124-135	LC(tpy)
			125-134	
			CFeC —> tpy	
			tpy —> tpy	
72	0.116149447	295.6	126-137	LC(dpp)
			126-139	LL'CT
			dpp —> dpp	
			dpp —> tpy	
73	0.032601315	292.5	127-139	LL'CT

			130-140	SBLCT
			dpp —> tpy	
			CFeC —> tpy	
79	0.044652682	287.3	126-139	LL'CT
			dpp —> tpy	

Table S9 : Selected B3LYP* orbitals at the PBE0 geometry (eigenvalues in eV)

4e. Data on Fe(NCN)₂ (5) (E=-2729.095831640 a.u.)

Fe	6.261836	3.128757	5.140752
Ν	6.964702	1.309367	4.788797
С	6.262468	3.131229	3.260527
С	7.310098	0.428328	5.728125
С	7.809368	-0.828756	5.438259
С	7.957326	-1.195091	4.106661
С	7.601077	-0.292819	3.122704
С	7.106574	0.957495	3.478347
С	6.699457	2.007697	2.557126
С	6.706958	2.002027	1.165092
С	6.274239	3.138768	0.481331
Ν	8.082612	3.831927	5.488532
С	6.263391	3.131004	7.020977
С	8.962183	4.176493	4.547502
С	10.219954	4.675467	4.834905
С	10.588749	4.824061	6.165725
С	9.688048	4.468727	7.151442
С	8.436942	3.974485	6.798253
С	7.388432	3.568215	7.721791
С	7.397016	3.576386	9.113785
С	6.261654	3.144167	9.800177
Η	7.173361	0.768292	6.747824
Η	8.075782	-1.499978	6.244284
Η	8.347166	-2.171218	3.841823
Η	7.701235	-0.536473	2.072214
Η	7.042112	1.135197	0.602355
Η	6.278893	3.141751	-0.602687
Η	8.620756	4.039436	3.528343
Η	10.889812	4.941137	4.027499
Η	11.565504	5.213656	6.428600
Η	9.933538	4.569319	8.201453
Η	8.265060	3.911752	9.674517
Η	6.260962	3.149375	10.884196
Ν	5.558011	4.949200	4.792769
С	5.207127	5.826406	5.733663
С	4.707996	7.084069	5.446086
С	4.566514	7.455524	4.115222
С	4.928109	6.557153	3.129653
С	5.421462	5.305742	3.482999
С	5.832164	4.258839	2.559582
С	5.836204	4.271977	1.167607
Н	5.506847	5.142281	0.606823
Н	4.832727	6.804530	2.079602
Н	4.177386	8.432421	3.852196

Η	4.437081	7.751935	6.253392
Н	5.339370	5.483245	6.752874
Ν	4.442753	2.425305	5.492911
С	3.564052	2.073674	4.553717
С	2.307019	1.574389	4.843757
С	1.937995	1.433611	6.175399
С	2.837962	1.796045	7.159212
С	4.088641	2.289512	6.803409
С	5.137261	2.700993	7.724511
С	5.127033	2.705719	9.116532
Н	4.257916	2.376636	9.679320
Н	2.592397	1.701158	8.209741
Н	0.961678	1.044356	6.440388
Н	1.637766	1.302794	4.037831
Н	3.905770	2.205553	3.533965

Figure S7 : Computed UV-Vis absorption spectrum in the 265-935 nm range.

Table S10 : Main transitions found in the absorption spectrum

State	Oscillator	Wavelength	Main	Major character
	strength	(nm)	components	
1	0.003339154	834.9	132,133 -> 134	MLCT
2	0.003351066	834.6	Fe —> L ₂	
3	0.016697299	722.5	132,133 -> 135	MLCT
4	0.016709556	722.5	Fe —> L ₂	
6	0.017735220	673.8	131 -> 134	MLCT

				1
			Fe —> L ₂	
9	0.016473785	599.3	132 -> 136	MLCT
			133 -> 137	
			Fe —> L	
12	0.055384742	545.5	131 -> 136,137	MLCT
13	0.055455557	545.5	132,133 -> 139	
			Fe —> L	
			Fe —> L ₂	
15	0.060483576	525.0	132,133 -> 139	MLCT
16	0.060458629	525.0	131 -> 136,137	MC
			132,133 -> 142	
			Fe —> L	
			$Fe \longrightarrow L_2$	
22	0.020(272(4	4(0.0	$Fe \longrightarrow Fe N_4$	МІСТ
23	0.039027204	409.0	131 - 130 122 > 140	MLCI
			$132 \longrightarrow 140$ 133 $\longrightarrow 141$	
			$F_{\Theta} \longrightarrow I$	
			$Fe \longrightarrow L_2$	
25	0.013709774	445.6	$131 \rightarrow 140.141$	MLCT
26	0.013707664	445.6	Fe —> L	
38	0.008598915	383.2	132.133 -> 143	PBLCT
39	0.008599517	383.7	126,127 -> 134	MC
0.1		00011	126,127 -> 135	
			$Fe \longrightarrow FeC_2$	
			FePh —> L_2	
51	0.016621968	339.5	133 -> 145	MLCT
			132 -> 144	LC
			128 -> 134	
			129 -> 135	
			Fe —> L	
			$L_2 \longrightarrow L_2$	
58	0.149818096	317.1	126,127 -> 138	PBLCT
59	0.155722166	316.7	128 -> 136,137	LC
			FePh —> L_2	
(0)	0.040110000		$L_2 \longrightarrow L_2$	
60	0.043119389	315.6	$128 \rightarrow 138$	LC
			129 -> 139	
61	0.075216045	200.0	$L_2 \longrightarrow L_2$ 122.122 > 1.46	MC
62	0.073210943	309.0	$132,133 \longrightarrow 140$ 126 127 $\longrightarrow 138$	DRI CT
02	0.073040003	507.0	$Fe \longrightarrow FeC_2$	I DECI
			FePh $\rightarrow L_2$	
63	0.056966124	309.2	132,133 -> 146	МС
64	0.058240536	309.3	126,127 -> 138	PBLCT
		_	$Fe \longrightarrow FeC_2$	
			FePh —> L_2	
68	0.026318307	310.8	133 -> 150	MLCT
			132 -> 149	

			Fe —> L ₂	
74	0.066003331	297.1	129 -> 139	LC
			$L_2 \longrightarrow L_2$	
77	0.232652751	295.9	128 -> 138	LC
			129 —> 139	
			$L_2 \longrightarrow L_2$	

Table S11 : Selected B3LYP* orbitals at the PBE0 geometry (eigenvalues in eV)

4f. Data on Fe(NCN)(NNC) (6) (E=-2729.105131394 a.u.)

Fe	5.482925	8.534531	4.785217
Ν	4.659046	6.748766	4.822830
С	5.276950	8.340130	6.601390
Ν	6.182411	10.274813	5.371877
С	3.753770	9.333340	4.419797
Ν	5.677578	8.743749	2.889424
Ν	7.293443	7.786694	4.524192
С	4.356254	6.014496	3.751749
Н	4.602332	6.462016	2.796276
С	3.759666	4.770913	3.832454
Н	3.535590	4.221933	2.927211
С	3.456177	4.258929	5.088700
Н	2.987137	3.287395	5.190422
С	3.755608	5.012699	6.206195
Η	3.529223	4.656912	7.203533
С	4.355850	6.258646	6.057942
С	4.711782	7.173287	7.125318
С	4.537030	7.027735	8.497761
Η	4.090242	6.130864	8.917682
С	4.934389	8.060006	9.347342
Η	4.795561	7.953490	10.416853
С	5.499968	9.230615	8.841787
Η	5.792160	10.022326	9.525588
С	5.668323	9.364936	7.467540
С	6.196375	10.488221	6.718139
С	6.665560	11.685735	7.247797
Н	6.661655	11.819905	8.322844
С	7.117782	12.679402	6.402033
Η	7.484078	13.617875	6.801779
С	7.088374	12.457345	5.030223
Η	7.421740	13.209350	4.326844
С	6.612553	11.245757	4.566015
Н	6.559127	11.027814	3.506457
С	2.699571	9.648772	5.281083
Η	2.807359	9.436312	6.340591
С	1.523397	10.222805	4.818426
Н	0.725573	10.456632	5.517122
С	1.349953	10.507410	3.463902
Η	0.428457	10.957115	3.112070
С	2.365719	10.209650	2.575977
Н	2.244357	10.426912	1.518643
С	3.545780	9.633681	3.049484
С	4.661404	9.287284	2.189373
С	4.784156	9.442902	0.810828

Η	3.969416	9.875772	0.244923
С	5.952498	9.037932	0.181297
Н	6.058409	9.156529	-0.890909
С	6.987362	8.479267	0.920452
Н	7.905548	8.156022	0.448394
С	6.807933	8.346523	2.290302
С	7.751631	7.782634	3.249919
С	9.001010	7.274309	2.920808
Н	9.328906	7.288263	1.889449
С	9.802739	6.756049	3.920251
Н	10.780612	6.352862	3.686460
С	9.329316	6.761318	5.226920
Н	9.921206	6.365692	6.042175
С	8.076125	7.284265	5.482672
Н	7.654721	7.314481	6.480657

Figure S8 : Computed UV-Vis absorption spectrum in the 255-1045 nm range.

Table S12 : Main transitions found in the absorption spectrum (pbp = phenylbipyridine ; dpb = dipyridylbenzene)

State	Oscillator	Wavelength	Main components	Major character
	strength	(nm)		
2	0.001887981	918.5	132 -> 134	MLCT
			Fe —> pbp	
3	0.007459227	730.4	133 -> 135,136	MLCT
			Fe —> dpb	

			Fe —> pbp	
4	0.012403493	721.1	131 —> 134,135	MLCT
			132 -> 135	
			Fe —> dpb	
			Fe —> pbp	
5	0.024669670	692.5	132 -> 135	MLCT
			131 -> 134	
			Fe —> dpb	
			Fe —> pbp	
6	0.010568684	681.5	133 -> 135,136	MLCT
			$Fe \longrightarrow dpb$	
_	0.04000550((F0 F	Fe —> pbp	
7	0.012205526	652.5	131 -> 134,135,136	MLCT
			132 -> 136	
			Fe —> app	
10	0.045024422	5710	re —> pop	MLCT
12	0.045924423	571.9	$131,132 \rightarrow 137$ $122 \rightarrow 120$	MLUI
			133 - 139	
11	0.083188730	520.3	122 \ 120	МІСТ
14	0.003100730	520.5	133 - 139 132 - 137	MLCI
			$Fe \longrightarrow dnh$	
15	0.033646257	5113	$131 \longrightarrow 138 139$	MLCT
15	0.055010257	511.5	$Fe \longrightarrow dnh$	
			Fe —> pbp	
17	0.056338350	493.0	$132 \rightarrow 138.139$	MLCT
			131 -> 139	_
			133 -> 140	
			Fe —> pbp	
			Fe —> dpb	
18	0.040879241	478.6	133 -> 140	MLCT
			132 -> 138	
			Fe —> dpb	
			Fe —> pbp	
30	0.034909884	384.9	127 -> 134	LC(pbp)
			131 -> 141	MLCT
			pbp —> pbp	
22	0.020071102	260.6	Fe —> pbp	MLCT
32	0.0300/1183	369.6	$132 \rightarrow 141$	MLCI LC(mbm)
			130 -> 130 122 > 14E	ւշ(իրի)
			155 - 145	
			$re \rightarrow pop$	
			$Fe \longrightarrow dnh$	
42	0.018027727	342.7	131 132 —> 143	MLCT
14	0.01002/72/	5 12.7	129.130 -> 136	LL'CT
			Fe —> pbp	LC(pbp)
			dpb —> pbp	-(
			pbp —> pbp	

46	0.023826385	342.8	130 —> 138 132 —> 143 pbp —> pbp	LC(pbp) MLCT
			Fe —> pbp	
48	0.021762987	332.4	131 -> 143	MLCT
			133 -> 145	
			$Fe \longrightarrow dnh$	
53	0.019424046	331.3	$127 \rightarrow 137$	LL'CT
00		00110	129 -> 138	SBLCT
			125 -> 136	
			pbp —> dpb	
			dpb —> pbp	
			CFeC —> pbp	-
54	0.017018534	334.9	129 -> 138	LL'CT
			$127 \longrightarrow 136,137$	LC(pbp)
			apo —> pop	
			$pbp \longrightarrow pbp$	
55	0.022810469	330.9	$127 \rightarrow 136$	LC(pbp)
	0.0220107	00000	133 -> 146	MC
			pbp —> pbp	
			$Fe \longrightarrow FeN_2C_2$	
59	0.030672687	318.7	126 -> 137	SBLCT
			CFeC —> dpb	
61	0.193331562	309.7	129 -> 137	LC(dpb)
			12/ -> 13/	
			$120 \longrightarrow 155$ 130 $\longrightarrow 140$	FDLCI
			$dph \longrightarrow dph$	
			pbp —> dpb	
			PhFe —> dpb	
62	0.026947823	311.0	125 -> 137	SBLCT
			CFeC —> dpb	
64	0.044436714	303.5	127 -> 138	LC(pbp)
			129 -> 136	LL'CT
			$130 \longrightarrow 138$	MLCT
			132 -> 143	
			$dnh \longrightarrow nhn$	
			Fe —> pbp	
65	0.018302203	320.0	133 -> 148	MLCT
			Fe —> pbp	
67	0.077096575	302.3	127 -> 138	LC(pbp)
			129 -> 135	LC(dpb)
			pbp —> pbp	
			apb —> apb	

72	0.066043611	297.0	132 -> 147	MLCT
			127 -> 138	LC(pbp)
			Fe —> pbp	
			pbp —> pbp	
76	0.030886227	299.0	128 -> 139	PBLCT
			129,130 -> 140	LC(dpb)
			131 —> 146,148	LL'CT
			PhFe —> dpb	MC
			dpb —> dpb	MLCT
			pbp —> dpb	
			$Fe \longrightarrow FeN_2C_2$	
			Fe —> pbp	
79	0.030431359	291.7	131 -> 147	MLCT
			124 —> 135	LL'CT
			Fe —> pbp	
			pbp —> dpb	

Table S13 : Selected B3LYP* orbitals at the PBE0 geometry (eigenvalues in eV)

4g. Data on Fe(NNC)₂ (7) (E=-2729.109767954 a.u.)

Fe	5.478079	8.459160	4.744803
Ν	4.633984	6.692934	4.814058
Ν	5.275189	8.285453	6.601165
С	6.146285	10.198735	5.237859
С	3.776881	9.305579	4.418737
Ν	5.667434	8.689164	2.894062
Ν	7.293589	7.763788	4.517122
С	4.294454	5.938007	3.765826
Н	4.537019	6.356106	2.796173
С	3.667495	4.715207	3.897491
Н	3.411977	4.145541	3.013410
С	3.372273	4.243601	5.172133
Н	2.880848	3.288247	5.309026
С	3.709547	5.021870	6.262493
Н	3.489101	4.699150	7.271778
С	4.336374	6.243151	6.055384
С	4.710626	7.177733	7.106038
С	4.505791	7.024544	8.469507
Н	4.041549	6.128033	8.858854
С	4.896695	8.058673	9.308834
Н	4.744719	7.974328	10.378489
С	5.468073	9.205485	8.777277
Н	5.762795	10.028513	9.415373
С	5.648910	9.307394	7.401496
С	6.179423	10.414821	6.635582
С	6.656932	11.597361	7.200624
Н	6.666199	11.728350	8.279193
С	7.118052	12.605999	6.376101
Н	7.492230	13.531542	6.798073
С	7.090671	12.423570	4.992781
Н	7.445136	13.219578	4.344634
С	6.613719	11.244352	4.439128
Н	6.597441	11.138004	3.357704
С	2.746806	9.631632	5.303699
Н	2.870595	9.427039	6.363812
С	1.570527	10.221182	4.863351
Н	0.789706	10.466993	5.576849
С	1.376381	10.510152	3.512069
Н	0.455406	10.974581	3.178936
С	2.372857	10.204053	2.604935
Н	2.237839	10.428866	1.550929
С	3.551992	9.610968	3.056070
С	4.666082	9.270019	2.197952
С	4.812268	9.485955	0.831272

Η	4.007983	9.951838	0.276716
С	5.991338	9.114101	0.202602
Н	6.116836	9.284256	-0.860314
С	7.016937	8.535595	0.937552
Н	7.952585	8.252878	0.474078
С	6.816975	8.339572	2.296333
С	7.766673	7.786633	3.249415
С	9.041427	7.336160	2.933557
Н	9.380395	7.371808	1.906371
С	9.855407	6.854012	3.940401
Н	10.853855	6.498064	3.717789
С	9.369230	6.841334	5.243413
Н	9.973111	6.481126	6.066242
С	8.091435	7.304317	5.484665
Н	7.669683	7.324910	6.482579

Figure S9 : Computed UV-Vis absorption spectrum in the 265-885 nm range.

Table S14 : Main transitions found in the absorption spectrum

State	Oscillator	Wavelength	Main	Major character
	strength	(nm)	components	
1	0.006543395	879.7	133 -> 134	MLCT
			Fe —> L ₂	
3	0.004451988	783.3	132 -> 134	MLCT
			131 -> 135	

			E. I	
-	0.00005040	(70.)	Fe -> L ₂	
5	0.022925342	670.6	133 -> 136	MLCI
			131 -> 135	
6	0.000010007	(540	$Fe \longrightarrow L_2$	
6	0.022818897	654.2	132,133 -> 136	MLCT
			131 -> 135	
			Fe —> L ₂	
7	0.011532207	648.7	131 -> 136	MLCT
			132 -> 135	
			Fe —> L ₂	
9	0.007412590	615.7	132 -> 136	MLCT
			131 -> 137	
			Fe —> L ₂	
11	0.009047740	565.2	131 -> 137	MLCT
			133 -> 138	
			Fe —> L ₂	
15	0.101920578	517.5	133 -> 138	MLCT
			131 -> 139	
			Fe —> L ₂	
16	0.034408814	497.0	132 -> 139	MLCT
			131 -> 138	
			Fe —> L ₂	
17	0.076263215	487.1	131 -> 139	MLCT
			132 -> 138	
			Fe —> L ₂	
20	0.015306784	426.2	133 —> 139,140	MLCT
			130 -> 136	PBLCT
			Fe —> L	
			Fe —> L ₂	
			$PhFePh \longrightarrow L_2$	
24	0.0090	396	133 —> 140,141	MLCT
			129 -> 134	PBLCT
			128 -> 135	SBLCT
			Fe —> L	
			$PhFePh \longrightarrow L_2$	
			$CFeC \longrightarrow L_2$	
28	0.013530997	383.9	130 -> 137	PBLCT
			131 -> 140	MLCT
			$PhFePh \longrightarrow L_2$	
			Fe —> L	
29	0.015090287	390.4	128 -> 135	SBLCT
			129 -> 134	PBLCT
			$CFeC \longrightarrow L_2$	
			$PhFePh \longrightarrow L_2$	
30	0.009533029	390.0	127 -> 134	SBLCT
			$CFeC \longrightarrow L_2$	
31	0.061389169	374.2	129 -> 135	PBLCT
			128 -> 134	SBLCT
			133 -> 140	LC
-				

			126 -> 134	MLCT
			$PhFePh \longrightarrow L_2$	
			$L_2 \longrightarrow L_2$	
			Fe —> L	
33	0.043005278	363.2	132 -> 141	MLCT
			131 -> 140,142	МС
			Fe —> L ₂	
			$Fe \longrightarrow FeN_2$	
38	0.012602650	352.1	131 -> 142	МС
			129 -> 136	PBLCT
			$Fe \longrightarrow FeN_2$	
			$PhFePh \longrightarrow L_2$	
40	0.026967033	351.5	128 -> 137	SBLCT
			126 —> 135	PBLCT
			129 -> 136	
			$PhFePh \longrightarrow L_2$	
43	0.025535834	344.0	133-144	MC
			126-135	SBLCT
			$Fe \longrightarrow FeN_2C_2$	
			$CFeC \longrightarrow L_2$	
44	0.031905645	341.1	126-135	SBLCT
			133-144	MC
			131-143	
			127-136	
			$CFeC \longrightarrow L_2$	
			$Fe \longrightarrow FeN_2C_2$	
			$Fe \longrightarrow FeC_2$	
47	0.062136815	334.8	127-136	SBLCT
			126-135	MC
			131-143	
			$CFeC \longrightarrow L_2$	
			$Fe \longrightarrow FeC_2$	
50	0.015316471	329.2	128-137	SBLCT
			129-138	PBLCT
			131-145	MC
			133-146	
			$CFeC \longrightarrow L_2$	
			$PhFePh \longrightarrow L_2$	
			$Fe \longrightarrow FeN_2$	
			$Fe \longrightarrow FeN_2C_2$	
51	0.011374973	325.9	131-144	MC
			129-137	PBLCT
			131-146	
			$Fe \longrightarrow FeN_2C_2$	
			$PhFePh \longrightarrow L_2$	
53	0.018538416	322.9	133-146	MC
			129-138	PBLCT
			$Fe \longrightarrow FeN_2C_2$	
			$PhFePh \longrightarrow L_2$	

55	0.019595634	321.0	132-144	МС
			129-138	PBLCT
			132-146	
			133-146	
			$Fe \longrightarrow FeN_2C_2$	
			PhFePh $\rightarrow L_2$	
62	0.015622011	324.4	128-139	SBLCT
			123-134	LC
			124-135	
			$CFeC \longrightarrow L_2$	
			$L_2 \longrightarrow L_2$	
67	0.017260487	304 3	126-137	SBLCT
07	0.017200107	501.5	123-147	MC
			127-138	
			$\Gamma \Sigma \gamma^{-1} S U$	
			$E_0 \rightarrow E_2$	
60	0.024000001	200.2	122 140	MLCT
00	0.034000001	290.2	155-140 Eo N.	MLCI
60	0.01/270606	207.0	122 146	MC
09	0.014270000	307.9	132-140	MC
			152-147	
71	0.0(1724020	20(2	$Fe \longrightarrow Fe N_2 U_2$	МІСТ
/1	0.061/24830	296.3	133-149	
			12/-138	SBLCI
			$Fe \longrightarrow L_2$	
70	0.025111120	201.0	$LFeL \longrightarrow L_2$	MLCT
/3	0.025111130	291.8	133-148	
			126-138	SRFCI
			$Fe \longrightarrow L_2$	
75	0.1250(4040	207.0	$LFeL \longrightarrow L_2$	MLCT
75	0.135964848	287.9	133-149	MLCI
			131-148	
70	0.01005(200	20(0	Fe —> L ₂	MLCT
/6	0.019056399	286.8	132-148	
			126-138	SBLCI
			124-136	LC
			$Fe \longrightarrow L_2$	
			$LFeC \longrightarrow L_2$	
			$L_2 \longrightarrow L_2$	
77	0.045263531	287.2	132-148	MLCT
			126-138	SBLCT
			131-147	MC
			$Fe \longrightarrow L_2$	
			$CFeC \longrightarrow L_2$	
			$Fe \longrightarrow FeN_2C_2$	
78	0.021063853	293.4	132-147	MC
			131-148	MLCT
			$Fe \longrightarrow FeN_2C_2$	
			Fe —> L ₂	
79	0.010005486	288.7	131-148	MLCT

	132-147	МС
	$Fe \longrightarrow L_2$	
	$Fe \longrightarrow FeN_2C_2$	

Table S15 : Selected B3LYP* orbitals at the PBE0 geometry (eigenvalues in eV)

5. Singlet and triplet excited states at the ground state geometry

	1	2	3	4	5	6	7
¹ MLCT	2.0 (S1)	1.5 (S1)	1.6 (S1)	1.5 (S1)	1.5 (S1)	1.2 (S1)	1.4 (S1)
³ MLCT	1.7 (T1)	1.2 (T1)	1.3 (T1)	1.3 (T1)	1.4 (T1)	1.1 (T1)	1.1 (T1)
Gap	0.3	0.3	0.3	0.2	0.1	0.1	0.3
^{1}MC	2.7 (S12)	2.7 (S17)	3.1 (S24)	3.2 (S27)	2.6 (S22)	3.1 (S24)	3.5 (S41)
³ MC	2.0 (T7)	2.0 (T8)	2.3 (T13)	2.5 (T18)	2.0 (T15)	2.5 (T20)	3.2 (T36)
Gap	0.7	0.7	0.8	0.7	0.6	0.6	0.3

Table S16 : TDDFT excited state distribution at the ground state geometries : energy of the states and gaps in eV, and corresponding excited state number.

One can note that the singlet-triplet energy difference is smaller for MLCT states than for MC states, except for complex **7**. In other words, in all cases but **7**, the stabilization occuring upon singlet-to-triplet intersystem crossing is larger in the MC state than in the MLCT state. As a consequence the ³MC-³MLCT gap is smaller than ¹MC-¹MLCT gap. In the case of **7** however, both states stabilize by the same amount of energy, which should disfavour the MC-MLCT crossing. This is shown schematically below, for complexes **1** (left) and **7** (right).

