Electronic Supplementary Information (ESI) for

Porous SnO$_2$-Fe$_2$O$_3$ nanocubes with improved electrochemical performance for lithium ion batteries

Yuan Yan, Feihu Du, Xiaoping Shen, Zhenyuan Ji, Hu Zhou, and Guoxing Zhu

*School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
*School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
*School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China

*Corresponding author. E-mail: xiaopingshen@163.com

Fig. S1 TG profile of nanocubic Sn$_3$[Fe(CN)$_6$]$_4$ precursor.
Fig. S2 The differential capacity vs voltage of SnO$_2$-Fe$_2$O$_3$ cell cycled at 200 mA g$^{-1}$.

Fig. S3 SEM images of the precursor Sn$_3$[Fe(CN)$_6$]$_4$ obtained under different solvothermal temperatures: (a) 120 °C and (b) 180 °C.
Fig. S4 Cycling performance of SnO$_2$-Fe$_2$O$_3$ samples with Sn/Fe mole ratios of 7.26 (a) and 1.53 (b) at the current density of 2000 mA g$^{-1}$.

![Diagram showing cycling performance of SnO$_2$-Fe$_2$O$_3$ samples]