Supplementary information

A luminescence line-narrowing spectroscopic study of the uranium(VI) interaction with cementitious materials and titanium dioxide

Authors: J. Tits,^{*a*} C. Walther^{*b*}, T. Stumpf^b, N, Macé^a, and E. Wieland^{*a*}

Institution: ^aLaboratory for Waste Management, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland. ^bInstitute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany.

Estimate of the Förster distance for U(VI) sorbed onto C-S-H phases (adapted fromVisser et al¹)

The Förster distance was calculated following a procedure described by Hink et al. 2003²: The Förster distance can be calculated using the following equation:

$$\mathbf{R}_{0} = 0.2108 \cdot \left(\kappa^{2} \cdot \Phi_{0} \cdot \mathbf{n}^{4} \cdot \mathbf{J} \right)^{\frac{1}{6}}$$
(1)

In which κ^2 , is the orientation factor, Φ_0 , the quantum efficiency of the sorbed $UO_2^{2^+}$, n is the refractive index and J, the degree of spectral overlap between donor fluorescence spectrum (F_D , its spectrum normalized so that the integral is equal to one), and acceptor absorption spectrum (scaled to its maximum molar extinction coefficient, ε , in units of M⁻¹ cm⁻¹), given here in terms of wavelength λ (in units of nm):

$$\mathbf{J} = \int_{0}^{\infty} \mathbf{F}_{\mathrm{D}}(\lambda) \cdot \boldsymbol{\varepsilon}(\lambda) \cdot \lambda^{4} \mathrm{d}\lambda$$
⁽²⁾

Parameters:

The parameters used to calculate the Förster distance for UO_2^{2+} in a C-S-H matrix, were taken from luminescence experiments with UO_2^{2+} in matrixes similar to the C-S-H matrix described in the literature. The Förster distances obtained with the present calculations are therefore **only rough approximations**.

Molar extinction coefficient (ɛ): 20 - 25 dm³ mol⁻¹ cm⁻¹

(For uranyl sorbed on colloidal silica and in silica glasses, measured with $\lambda_{ex} = 337$ nm at room temperature^{3, 4}).

Dipole orientation factor (\kappa^2): 0.48 (Visser and Rolinski, 2010. Basic Photophysics. http:// www.photobiology.info.)

Refractive index (n): 1.55 (Plombierite or 14Å Tobermorite, a crystalline analog of C-S-H phases⁵)

Quantum yield (Φ_0 **): 0.7** (Uranyl in silica glasses measured with $\lambda_{ex} = 337 \text{ nm}^4$)

The Förster distance, R_0 , was calculated with the help of an Excel spreadsheet provided by Visser et al¹. J was calculated from the overlap between the normalized UO_2^{2+} excitation spectrum and a normalized UO_2^{2+} luminescence spectrum recorded at an excitation wavelength $\lambda_{ex} = 476$ nm (Figure 1). This calculation results in a value for the Förster distance of $R_0 = 10.98$ Å or 1.1 nm.

Figure 1: Excitation spectrum and luminescence spectrum recorded at $\lambda_{ex} = 476$ nm of UO_2^{2+} sorbed on a C-S-H phase.

Estimate of the Förster distance for U(VI) sorbed onto rutile

The same calculation procedure as in the case of the C-S-H phases was applied. Compared the the calculations for UO_2^{2+} in a C-S-H matrix, only the refractive index was adapted. The other parameters were not changed due to a lack of relevant literature data. The Förster distances obtained with the present calculations are therefore **only rough approximations**.

The following parameters were used:

Parameters:

Molar extinction coefficient (ɛ): 20 - 25 dm³ mol⁻¹ cm⁻¹

(A value for the molar extinction coefficient of UO_2^{2+} sorbed on rutile could not be found in the literature. The same vale as for UO_2^{2+} sorbed on C-S-H phases was adopted as a rough approximation.

Dipole orientation factor (\kappa^2): 0.48 (Visser and Rolinski, 2010. Basic Photophysics. http:// www.photobiology.info.)

Refractive index (n): 2.86

Quantum yield (Φ_0): 0.7

(A value for the molar extinction coefficient of UO_2^{2+} sorbed on rutile could not be found in the literature. The same vale as for UO_2^{2+} sorbed on C-S-H phases was adopted as a rough approximation.)

This calculation results in a value for the Förster distance of $R_0 = 6.93$ Å or 0.69 nm.

Figure 2: Excitation spectrum and luminescence spectrum recorded at $\lambda_{ex} = 460$ nm of $UO_2^{2^+}$ sorbed on rutile.

- 1. A. J. W. Visser and O. J. Rolinsky, in *Photobiological Sciences Online*, American Society for Photobiology, 2010.
- M. A. Hink, N. V. Visser, J. W. Borst, A. Van Hoek and A. J. W. Visser, J. Fluoresc., 2003, 13, 185-188.
- 3. M. Lopez and D. J. S. Birch, Chem. Phys. Lett., 1997, 268, 125-132.
- 4. G. Folcher, N. Keller and J. Paris, Sol. Energ. Mater., 1984, 10, 303-307.
- 5. J. D. C. McConnell, Mineral. Mag., 1954, 30, 293-305.
- 6. W. R.C. and M. J. Astle, eds., *CRC Handbook of Chemistry and Physics*, CRC Press, Inc., Boca Raton, Florida, USA, 1982.