Electronic Supplementary Information for

Neutral Redox-active Hydrogen- and Halogen-Bonding [2]Rotaxanes for the Electrochemical Sensing of Chloride

Jason Y.C. Lim^{*a*}, Matthew J. Cunningham^{*b*}, Jason J. Davis^{*b*} and Paul D. Beer^{**a*}

 ^a Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
^b Physical & Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3TA (UK).

E-mail: paul.beer@chem.ox.ac.uk

Contents

1.	Synthesis of Ferrocene-appended macrocycles 7a-d S	32
2.	Spectral Characterisation of [2]Rotaxanes 1a-e Se	4
3.	Anion Recognition Studies of [2]Rotaxanes by ¹ H NMR Titrations S	314
4.	Electrochemical Studies S	317
5.	References S	527

1. Synthesis of Ferrocene-appended macrocycles 7a-d

Tert-butyl macrocycle 7a

To a suspension of 5-tert-butyl isophthalic acid (65.2 mg, 0.293 mmol) in dry CH₂Cl₂ (5.0 mL) was added oxalyl chloride (0.075 mL, 0.880 mmol), along with catalytic quantities of $N_{,N-}$ dimethylformamide. The mixture was stirred under N₂ for 3 hours to obtain a clear solution. Removal of solvent in vacuo gave the corresponding bis-acid chloride as a yellow solid, which was then redissolved in dry CH₂Cl₂ (8.0 mL) and taken up in a syringe. Separately, 6 (207 mg, 0.293 mmol) was dissolved in dry CH₂Cl₂ (8.0 mL) and taken up in a syringe. The contents of both syringes were added to a vigorously stirred solution of dry triethylamine (0.25 mL, 1.76 mmol) in dry CH₂Cl₂ (400 mL) over 4 hours using a syringe pump, and the resulting solution was stirred overnight under N2. The clear orange reaction mixture was concentrated till a volume of c.a. 50 mL before being washed with 1M HCl (20 mL), followed by water (2 x 20 mL). Following drying with MgSO₄, the solvent was removed to yield a red-brown solid which was purified with silica gel chromatography (2 % CH₃OH in CH₂Cl₂) to give macrocycle 7a as an orange solid (58 mg, 22 %). ¹H-NMR (400 MHz, 1:1 CDCl₃/ CD₃OD) δ 8.08 (2H, s, ArH ferrocene isophthalate), 8.04 (2H, s, ArH tert-butyl isophthalate), 8.00 (2H, m, ArH ferrocene and tert-butyl isophthalates), 6.79 (8H, s, ArH hydroquinone), 4.73 (2H, s, FcH), 4.34 (2H, s, FcH), 4.05 - 4.10 (8H, m, CH₂O), 3.98 (5H, s, FcH), 3.76 - 3.80 (8H, m, CH₂NH₂), 1.33 (9H, s, tertbutyl-H); ¹³C-NMR (100 MHz, 1:1 CDCl₃/ CD₃OD) δ 168.4, 168.1, 153.0, 152.5, 141.4, 134.3, 133.9, 127.9, 127.8, 122.2, 122.1, 155.4, 83.0, 69.5, 67.1, 66.5, 39.7, 39.7 (repeat), 34.9, 30.7; MS (ESI +ve) m/z 915.3034 ([M + Na]⁺, C₅₀H₅₂FeN₄NaO₈, calc. 915.3028).

Bis-ferrocene-appended macrocycle 7b

5-ferrocene isophthalic acid 3 (99.1 mg, 0.283 mmol) was suspended in dry CH₂Cl₂ (5.0 mL) containing catalytic quantities of N, N – dimethylformamide and cooled to 0 °C. Oxalyl chloride (0.073 mL, 0.849 mmol) was added dropwise and the reaction was stirred for 2 h under N2 till a clear red solution was obtained. The solvent was then removed in vacuo to yield the bis-acid chloride as a redbrown solid, which was then redissolved in dry CH_2Cl_2 (6 mL) and loaded into a syringe. 6 (200 mg, 0.283 mmol) was dissolved in dry CH₂Cl₂ (6.0 mL) containing triethylamine (0.24 mL, 1.70 mmol) and loaded into another syringe. The contents of both syringes were added to vigorously-stirred dry CH₂Cl₂ (450 mL) dropwise using a syringe pump over 3 h, and stirred overnight under N₂. The reaction mixture was then concentrated to approximately 50 mL, and washed with 10 % HCl (20 mL), followed by water (3 x 20 mL). The combined organics were dried with MgSO₄ and dried *in vacuo* to give an orange-brown solid. Purification via silica gel chromatography (3 % CH₃OH in CH₂Cl₂) yielded 7b as an orange solid (57.9 mg, 20 %). ¹H-NMR (400 MHz, 1:1 CDCl₃/ CD₃OD) δ 8.10 (4H, s, ArH), 7.98 (2H, s, ArH), 6.83 (s, 8H, hydroquinone-H), 4.77 (4H, s, FcH), 4.36 (4H, s, FcH), 4.09 (8H, t, ${}^{3}J = 4.7$ Hz, CH₂O), 4.00 (10H, s, FcH), 3.80 (8H, t, ${}^{3}J = 5.0$ Hz, CH₂NH); ${}^{13}C$ -NMR (100 MHz, 1:1 CDCl₃/ CD₃OD) δ 167.6, 152.7, 141.2, 134.1, 127.7, 121.5, 115.2, 82.7, 69.4, 66.9, 66.4, 49.0, 39.5; MS (ESI +ve) m/z 1043.2380 ([M + Na]⁺, C₅₆H₅₂Fe₂N₄NaO₈, calc. 1043.2379).

Pyridine macrocycle 7c

3,5-pyridine dicarboxylic acid (28.0 mg, 0.167 mmol) was suspended in dry CH₂Cl₂ (2.0 mL) at 0 °C. To this white suspension was added a drop of dry N,N – dimethylformamide followed by oxalyl chloride dropwise (0.043 mL, 0.501 mmol), and the reaction was allowed to stir for 2 hours under N_2 until a clear pale yellow solution was obtained. After removing the solvent in vacuo, the resulting offwhite solid was redissolved in 6.0 mL of dry CH_2Cl_2 and taken up in a syringe. Separately, the ferrocene-functionalised bisamine macrocycle precursor 6 (117 mg, 0.164 mmol) and anhydrous triethylamine (0.14 mL, 1.00 mmol) was dissolved in 6.0 mL of dry CH₂Cl₂, and the resulting red solution was taken up in a syringe. The contents of both syringes were added dropwise over 4 hours to vigorously-stirred dry CH₂Cl₂ (300 mL) and the reaction was allowed to proceed overnight under N₂. Following which, the crude reaction mixture was concentrated till approximately 50 mL and washed with 10 % citric acid (2 x 30 mL) then water (2 x 30 mL). The organic layer was dried with MgSO₄ and the solvent removed in vacuo to obtain an orange solid. Silica gel column chromatography (5 % CH₃OH in CH₂Cl₂) yielded the macrocycle 7c as an orange powder (34.0 mg, 25 %). ¹H-NMR (400 MHz, d⁶-DMSO) δ 9.09 (2H, s, ArH pyridine isophthalamide), 8.98 (2H, t, ³J = 4.0 Hz, CONH pyridine isophthalamide), 8.79 (2H, t, ${}^{3}J = 4.0$ Hz, CONH ferrocene isophthalamide), 8.58 (1H, s, ArH pyridine isophthalamide), 8.11 (1H, s, ArH ferrocene isophthalamide), 8.09 (2H, s, ArH ferrocene isophthalamide), 6.88 (8H, m, ArH hydroquinone), 4.91 (2H, s, FcH), 4.44 (2H, s, FcH), 4.06 (8H, t, ³J = 6.4 Hz, CH₂O), 4.04 (5H, s, FcH), 3.63 (8H, m, CH₂NHCO) ; ¹³C-NMR (125 MHz, d⁶-DMSO) δ 166.7, 165.2, 153.1, 153.0, 152.8, 151.0, 140.3, 135.2, 134.3, 130.0, 127.2, 124.2, 115.9, 83.8, 70.0, 69.9, 67.7, 67.1, 67.0, 50.1; **MS** (ESI +ve) 860.2339 m/z ([M + Na]⁺, C₄₅H₄₃FeN₅NaO₈, calc. 860.2354).

Nitro-appended macrocycle 7d

5-nitroisophthalic acid (35.0 mg, 0.167 mmol) and a drop of dry N_N – dimethylformamide was mixed with dry CH_2Cl_2 (2.0 mL) to give a white suspension which was then cooled to 0 °C, before oxalyl chloride (0.043 mL, 0.50 mmol) was added dropwise. After stirring for 2 hours, the clear yellow solution was dried in vacuo to afford the bis-acid chloride as a pale yellow solid. This was dissolved in 6.0 mL of dry CH_2Cl_2 and taken up in a syringe, and was added to vigorously-stirred dry CH_2Cl_2 (400 mL), together with the contents of another syringe containing 6 (116 mg, 0.164 mmol) and anhydrous triethylamine (0.14 mL, 1.0 mmol) dissolved in dry dichloromethane (6.0 mL), over a period of 3 hours using a syringe pump. The reaction was allowed to proceed overnight under N₂, before being concentrated in vacuo to a volume of 50 mL. After washing with 10 % citric acid (2 x 30 mL) and water (2 x 30 mL), the organic layer was dried over MgSO₄ and solvent removed to afford an orange solid. Silica gel column chromatography using 2 % CH₃OH in CH₂Cl₂ as eluent gave the macrocycle **7d** as an orange powder (54 mg, 37 %). **¹H-NMR** (400 MHz, d^6 -DMSO) δ 9.17 (2H, t, ${}^3J = 5.0$ Hz, $NO_2ArCONH$, 8.79 (2H, t, ${}^{3}J = 5.0$ Hz, FcArCONH, 8.77 (2H, s, NO_2 -ArH), 8.74 (1H, s, NO_2 -ArH), 8.10 (1H, s, Fc-ArH), 8.08 (2H, s, Fc-ArH), 6.87 (8H, m, hydroquinone-ArH), 4.90 (2H, s, FcH), 4.43 (2H, s, FcH), 4.07 (8H, m, -CH₂O), 4.03 (5H, s, FcH), 3.64 (8H, m, -CH₂NHCO); ¹³C-NMR (125 MHz, d⁶-DMSO) δ 166.6, 164.6, 153.2, 153.0, 148.4, 140.3, 136.5, 135.2, 132.6, 127.2, 124.8, 124.2,

116.0, 115.9, 83.8, 69.9, 69.9 (repeat), 67.1, 67.0, 66.8; **MS** (ESI +ve) m/z 904.2221 ([M + Na]⁺, C₄₆H₄₃FeN₅NaO₁₀, calc. 904.2253).

S2. Spectral Characterisation of [2]Rotaxanes 1a-e

Fig S2-1. ¹H NMR of [2]rotaxane 1a in 1:1 CDCl₃/ CD₃OD at 298 K (500 MHz).

Fig S2-2. ¹³C NMR of [2]rotaxane 1a in 1:1 CDCl₃/ CD₃OD at 298 K (125 MHz).

Fig. S2-3. ¹H ROESY spectrum of rotaxane **1a** in 1:1 CDCl₃/ CD₃OD at 298 K (500 MHz). Cross peaks indicative of the interlocked nature of the rotaxane are circled in red and proton labels follow those in **Fig. S2-1**.

Fig. S2-4. High-resolution mass spectrum of rotaxane 1a. Top: theoretical isotope model; Bottom: measured spectrum.

[2]Rotaxane 1b

Fig S2-5. ¹H NMR of [2]rotaxane 1b in 1:1 CDCl₃/ CD₃OD at 298 K (500 MHz).

Fig S2-6. ¹³C NMR of [2]rotaxane 1b in 1:1 CDCl₃/ CD₃OD at 298 K (125 MHz).

Fig. S2-7. ¹H ROESY spectrum of rotaxane **1b** in 1:1 CDCl₃/ CD₃OD at 298 K (500 MHz). Cross peaks indicative of the interlocked nature of the rotaxane are circled in red and proton labels follow those in **Fig. S2-5**.

Fig. S2-8. High-resolution mass spectrum of rotaxane 1b. Top: theoretical isotope model; Bottom: measured spectrum.

[2]Rotaxane 1c

Fig S2-9. ¹H NMR of [2]rotaxane 1c in 1:1 CDCl₃/ CD₃OD at 298 K (500 MHz).

Fig S2-10. ¹³C NMR of [2]rotaxane 1c in 1:1 CDCl₃/ CD₃OD at 298 K (125 MHz).

Fig. S2-11. ¹H ROESY spectrum of rotaxane **1c** in 1:1 CDCl₃/ CD₃OD at 298 K (500 MHz). Cross peaks indicative of the interlocked nature of the rotaxane are circled in red and proton labels follow those in **Fig. S2-9**.

Fig. S2-12. High-resolution mass spectrum of rotaxane 1b. Top: theoretical isotope model; Bottom: measured spectrum.

[2]Rotaxane 1d

Fig S2-13. ¹H NMR of [2]rotaxane 1d in 1:1 CDCl₃/ CD₃OD at 298 K (500 MHz).

Fig S2-14. ¹³C NMR of [2]rotaxane 1d in 1:1 CDCl₃/ CD₃OD at 298 K (125 MHz).

Fig. S2-15. ¹H ROESY spectrum of rotaxane **1d** in 1:1 CDCl₃/ CD₃OD at 298 K (500 MHz). Cross peaks indicative of the interlocked nature of the rotaxane are circled in red and proton labels follow those in **Fig. S2-13**.

Fig. S2-16. High-resolution mass spectrum of rotaxane 1d. Top: theoretical isotope model; Bottom: measured spectrum.

[2]Rotaxane 1e

Fig S2-17. ¹H NMR of [2]rotaxane 1e in 1:1 CDCl₃/ CD₃OD at 298 K (500 MHz).

Fig S2-18. ¹³C NMR of [2]rotaxane 1e in 1:1 CDCl₃/ CD₃OD at 298 K (125 MHz).

Fig. S2-19. ¹H ROESY spectrum of rotaxane **1e** in 1:1 CDCl₃/ CD₃OD at 298 K (500 MHz). Cross peaks indicative of the interlocked nature of the rotaxane are circled in red and proton labels follow those in **Fig. S2-17**.

Fig. S2-20. High-resolution mass spectrum of rotaxane 1e. Top: theoretical isotope model; Bottom: measured spectrum.

S3. Anion Recognition Studies of [2]Rotaxanes by ¹H NMR titrations General Protocol

¹H NMR titration experiments were performed on a Bruker AVIII 500 MHz spectrometer. In a typical experiment, a solution of the appropriate tetrabutylammonium (TBA) salt was added to the [2]rotaxane solution at 298 K. Both TBA salt and rotaxane were dissolved in a solvent mixture containing CDCl₃/ CD₃OD/ D₂O in 45:45:10 ratio. TBA was chosen as the counter-cation due to its non-coordinating nature. A 0.075 M solution of the salt was added to 0.50 mL of a 1.5 mM solution of rotaxane, where 1.0 equivalent of salt added corresponds to 10 μ L of the salt solution. The chemical shift of the internal isophthalamide protons, pyridine *N*-oxide proton and triazole proton for bis-prototriazole rotaxanes **1a**-**d** and the same protons except the triazole ones for bis-iodotriazole rotaxane **1e** were monitored for 17 data points corresponding to 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, 7.0 and 10.0 equivalents of added guest anion.

The binding of anions in the [2]rotaxanes **1a-e** were found to be fast on the NMR timescale. The values of the observed chemical shift and concentration of anion were entered into the WinEQNMR2¹ computer programme for every titration point. From initial estimates made of the binding constants and limiting chemical shifts, these parameters were refined using non-linear least-squares analyses to obtain the best fit between empirical and calculated chemical shifts based on a 1:1 binding stoichiometry. The input parameters were varied till convergence of the best fit values of the binding constants and their errors were obtained.

For [2]rotaxanes **1a-e**, all protons monitored gave nearly identical values of binding constants. Hence in all cases that follow, the pyridine N-oxide proton for each rotaxane will be used to represent the titration results. In Fig. S3.1 – S3.4, empirical data points are represented by the filled dots, while continuous lines represent the calculated binding curves.

¹H NMR titration data

Binding curves for [2]rotaxane 1a are shown in the main article as Fig. 4. All titrations were carried out with the solvent mixture of $CDCl_3/CD_3OD/D_2O$ 45:45:10 at 298 K.

[2]Rotaxane 1b

Fig. S3-1. Changes in chemical shift of the internal pyridine N – oxide proton upon addition of increasing quantities of TBA salt to the NMR solution of rotaxane **1b**.

Fig. S3-2. Changes in chemical shift of the internal pyridine N – oxide proton on addition of increasing quantities of TBA salt to the NMR solution of rotaxane 1c.

[2]Rotaxane 1d

Fig. S3-3. Changes in chemical shift of the internal pyridine N – oxide proton on addition of increasing quantities of TBA salt to the NMR solution of rotaxane 1d.

[2]Rotaxane 1e

Fig. S3-4. Changes in chemical shift of the internal pyridine N – oxide proton on addition of increasing quantities of TBA salt to the NMR solution of bis-iodotriazole [2]rotaxane 1e.

4. Electrochemical Studies

General Protocol

Cyclic voltammetry (CV) was performed on an Autolab PGSTAT-12 system and all data was analyzed using General Purpose Electrochemical Software (GPES) version 4.9. All electrochemistry was undertaken in anhydrous acetonitrile - dichloromethane (1:1), with 0.1 M TBAPF₆ supporting electrolyte. All diffusive voltammetry was undertaken at a 3 mm diameter glassy carbon working electrode (BASi), cleaned prior to use using 0.3 micron alumina powder (Buehler), and all potentials were referenced to a Ag / AgNO3 reference electrode2; the latter was prepared using an anhydrous acetonitrile-based solution of 10 mM AgNO3 and 0.15 M TBAPF6. A Ag/AgNO3 reference electrode was used in preference to the more commonly used Ag/AgCl reference electrode in order to prevent any potential interference in the sensory response of the rotaxanes arising from any chloride anion leakage. All solutions were degassed with dry nitrogen prior to the recording of each CV. CVs were recorded with a 1 s equilibration time, step potential of 1 mV and at a scan rate of 100 mV s⁻¹. For all the host systems investigated, the host was dissolved in the electrolyte solution to afford a concentration of 0.5 mM. The electrochemical reversibility of each system was probed by vitue of varying the scan rate (25, 50, 75, 100, 250, 500 mV s⁻¹). After which, electrochemical anion binding experiments were performed by adding known aliquots of anions, (as a 0.25 M solution in the same electrolyte mixture) corresponding to 0.0, 0.5, 1.0, 2.0 and 5.0 equivalents, respectively.

Prior to utilising the Ag / AgNO₃ working electrode, a ¹H NMR titration experiment was performed in the presence of TBANO₃ and [2]rotaxane **1b** (solutions prepared as described in Section S3). As shown in **Fig. S4-1**, the addition of 10.0 equivalents of TBANO₃ brought about NMR peak shifts of < 0.1 ppm, giving binding constants too small to be calculated using the WinEQNMR2 programme. Hence the nitrate anion does not bind in the cavity of the rotaxanes.

Fig S4-1. ¹H NMR spectra of titration experiments with [2]rotaxane 1b and TBANO₃ in CDCl₃/ $CD_3OD/D_2O = 45:45:10$ at 298 K (500 MHz).

Electrochemical Reversibility Studies

The electrochemical reversibility of our host systems are probed by recording CV scans at different scan rates. An electrochemical system is described as reversible, and hence exhibits fast electron transfer kinetics, when the following criteria are met:

- 1. $\Delta E_p = (59 / n) \text{ mV}$, where n = number of electrons transferred in the redox process. For our ferrocene-appended host systems, n = 1 during ferrocene redox chemistry. Hence, ΔE_p should be 59 mV for our systems.
- 2. Potentials E_{pa} and E_{pc} corresponding to peak oxidation and reduction currents respectively are independent of the scan rate.
- 3. The peak cathodic (I_{pc}) and anodic (I_{pa}) currents are of equal magnitude, i.e. $I_{pc}/I_{pa} = 1$.
- 4. The peak currents are proportional to the square root of the CV scan rate.

Unless otherwise stated, all CVs are recorded in 0.1 M TBAPF₆ electrolyte solution ($CH_2Cl_2/CH_3CN = 1:1$) and potentials are compared to the Ag / AgNO₃ reference electrode.

Macrocycle 7a

Fig. S4-2. CVs of macrocycle 7a at different scan rates.

Table S4-1. Values of E_{pc} , E_{pa} , I_{pa} , $I_{pc} \Delta E_p$ and I_{pa}/I_{pc} for macrocycle **7a** recorded at different scan rates.

Scan rate/ mV s ⁻¹	E_{pa}/V	E_{pc} /V	$I_{pa}/\mu A$	$I_{pc}/\mu A$	$\Delta E_p / \mathbf{V}$	I _{pa} / I _{pc}
25	0.233	0.174	2.900	2.910	0.059	0.997
50	0.232	0.174	4.600	4.550	0.058	1.011
75	0.239	0.176	6.880	6.720	0.063	1.024
100	0.238	0.180	7.380	7.580	0.058	0.974
250	0.238	0.178	11.730	11.590	0.060	1.012
500	0.240	0.175	16.500	15.900	0.065	1.038

Fig. S4-3. Plots of (A) I_{pa} and (B) I_{pc} against (scan rate)^{1/2} for macrocycle 7a.

Macrocycle 7a exhibits a quasi-reversible Fc/Fc⁺ redox couple.

[2]Rotaxane 1a

Fig. S4-4. CVs of [2]rotaxane 1a at different scan rates.

Table S4-2. Values of $E_{pc},\,E_{pa},\,\Delta E_p$ and $I_{pa}/$ I_{pc} for [2]rotaxane 1a at different scan rates.

Scan rate/ mV s ⁻¹	E_{pa} /V	E_{pc}/V	$I_{pa}/\mu A$	$I_{pc}/\mu A$	$\Delta E_p / \mathbf{V}$	I _{pa} / I _{pc}
25	0.232	0.172	3.080	3.040	0.060	1.013
50	0.232	0.171	4.570	4.460	0.061	1.025
75	0.233	0.174	5.540	5.420	0.059	1.022
100	0.235	0.172	6.720	6.240	0.063	1.077
250	0.234	0.172	10.900	10.400	0.062	1.048
500	0.236	0.174	16.800	15.900	0.062	1.057

Fig. S4-5. Plots of (A) I_{pa} and (B) I_{pc} against (scan rate)^{1/2} for [2]rotaxane 1a.

[2]Rotaxane 1a exhibits a quasi-reversible Fc/Fc⁺ redox couple.

[2]Rotaxane 1b

Fig. S4-6. CVs of [2]rotaxane 1b at different scan rates.

Scan rate/ mV s ⁻¹	E_{pa} /V	E_{pc} /V	<i>I_{pa}</i> / μA	<i>I_{pc}</i> / μA	$\Delta E_p / \mathbf{V}$	I_{pa}/I_{pc}
25	0.252	0.172	4.569	4.635	0.080	0.986
50	0.252	0.172	6.589	6.643	0.080	0.992
75	0.252	0.172	8.258	8.309	0.080	0.994
100	0.252	0.172	9.671	9.712	0.080	0.996
250	0.262	0.161	15.140	15.270	0.101	0.991
500	0.272	0.161	22.440	21.750	0.111	1.032

Table S4-3. Values of E_{pc} , E_{pa} , ΔE_p and I_{pa} / I_{pc} for [2]rotaxane 1b at different scan rates.

Fig. S4-7. Plots of (A) I_{pa} and (B) I_{pc} against (scan rate)^{1/2} for [2]rotaxane 1b.

[2]rotaxane **1b** exhibits a quasi-reversible Fc/Fc⁺ redox couple.

[2]Rotaxane 1c

Fig. S4-8. CVs of [2]rotaxane 1c at different scan rates.

Table S4-4. Values of $E_{pc},\,E_{pa},\,\Delta E_p$ and $I_{pa}/$ I_{pc} for [2]rotaxane 1c at different scan rates.

Scan rate/ mV s ⁻¹	E_{pa} /V	E_{pc} /V	$I_{pa}/\mu A$	$I_{pc}/\mu A$	$\Delta E_p / \mathbf{V}$	I _{pa} / I _{pc}
25	0.252	0.172	2.042	2.078	0.080	0.983
50	0.252	0.172	2.954	2.971	0.080	0.994
75	0.252	0.172	3.645	3.654	0.080	0.998
100	0.252	0.172	4.257	4.263	0.080	0.999
250	0.252	0.172	6.840	7.183	0.080	0.952
500	0.252	0.172	9.272	9.759	0.080	0.950

Fig. S4-9. Plots of (A) I_{pa} and (B) I_{pc} against (scan rate)^{1/2} for [2]rotaxane 1c.

[2]rotaxane 1c exhibits a quasi-reversible Fc/Fc⁺ redox couple.

[2]Rotaxane 1d

75

100

250

Fig. S4-10. CVs of [2]rotaxane 1d at different scan rates.

0.252

0.252

0.252

			-			
Scan rate/ mV s ⁻¹	E_{pa} /V	E_{pc} /V	$I_{pa}/\mu A$	$I_{pc}/\mu A$	$\Delta E_p / \mathbf{V}$	I _{pa} / I _{pc}
25	0.252	0.182	2.018	2.024	0.070	0.997
50	0.252	0.182	2.904	2.950	0.070	0.984

3.603

4.270

7.890

3.648

4.320

7.413

0.070

0.070

0.070

0.988

0.988

1.064

Table S4-5. Values of E_{pc} , E_{pa} , ΔE_p and I_{pa}/I_{pc} for [2]rotaxane 1d at different scan rates.

0.182

0.182

0.182

500	0.252	0.172	11.210	10.480	0.080	1.070	
(Δ)				(B)			
$(12)^{10^{5}}$				(∠) 1 2x10 ⁵ ¬			
1.2×10				1.2410			
1.0x10 ⁻⁵ −				1.0x10 ⁻⁵ -			/
8.0×10 ⁻⁶ -	Y			8.0×10 ⁻⁶ -		•	
َ ه 6.0x10 ⁻⁶				€ 6.0x10 ⁻⁶			
<u> </u>				<u> </u>			
4.0x10 ⁻⁶ -				4.0x10 ⁻⁶ -			
	•			0.0.405			
2.0x10° - ■				2.0x10° -	•		
0.1	0.2 0.3 0.4 0.5	0.6 0.7	0.8	0.1	0.2 0.3 0.	4 0.5 0.6	0.7 0.8
	Scan rate ^{0.5} (V s	¹) ^{0.5}			Scan r	rate ^{0.5} (V s ⁻¹) ^{0.5}	

Fig. S4-11. Plots of (A) I_{pa} and (B) I_{pc} against (scan rate)^{1/2} for [2]rotaxane 1d.

[2]rotaxane 1d exhibits a quasi-reversible Fc/Fc⁺ redox couple.

[2]Rotaxane 1e

Fig. S4-12. CVs of [2]rotaxane 1e at different scan rates.

Table S4-6. Values of E_{pc} , E_{pa} , ΔE_p and I_{pa} / I_{pc} for [2]rotaxane 1e at different scan rates.

Scan rate/ mV s ⁻¹	E_{pa} /V	E_{pc} /V	$I_{pa}/\mu A$	$I_{pc}/\mu A$	$\Delta E_p / \mathbf{V}$	I_{pa}/I_{pc}
25	0.253	0.184	1.446	1.569	0.069	0.922
50	0.255	0.185	3.445	3.595	0.070	0.958
75	0.254	0.182	4.375	4.442	0.072	0.985
100	0.254	0.183	4.999	5.164	0.071	0.968
250	0.254	0.185	8.249	8.364	0.069	0.986
500	0.255	0.186	12.120	12.100	0.069	1.002

Fig. S4-13. Plots of (A) I_{pa} and (B) I_{pc} against (scan rate)^{1/2} for [2]rotaxane 1e.

[2]rotaxane 1e exhibits a quasi-reversible Fc/Fc⁺ redox couple.

Data for Electrochemical Anion titrations

Macrocycle 7a

Fig. S4-14. CVs of macrocycle **7a** upon the addition of 0.0, 0.5, 1.0, 2.0 and 5.0 equivalents of (A) TBACl; (B) TBABr; (C) TBA acetate and (D) TBAH₂PO₄. TBA acetate was used instead of TBAI due to the fact that oxidation of iodide fell within the electrochemical window of interest.

Chloride Binding Studies for [2]Rotaxane 1b-e

Fig. S4-15. (A) CVs of [2]rotaxane **1b** upon the addition of 0.0, 0.5, 1.0, 2.0 and 5.0 equivalents of TBACl. (B) Plot of $E_{1/2}$ against equivalents of chloride anion added for [2]rotaxane **1b**.

Fig. S4-16. (A) CVs of [2]rotaxane **1c** upon the addition of 0.0, 0.5, 1.0, 2.0 and 5.0 equivalents of TBACI. (B) Plot of $E_{1/2}$ against equivalents of chloride anion added for [2]rotaxane **1c**.

Fig. S4-17. (A) CVs of [2]rotaxane 1d upon the addition of 0.0, 0.5, 1.0, 2.0 and 5.0 equivalents of TBACl. (B) Plot of $E_{1/2}$ against equivalents of chloride anion added for [2]rotaxane 1d.

Fig. S4-18. (A) CVs of [2]rotaxane **1e** upon the addition of 0.0, 0.5, 1.0, 2.0 and 5.0 equivalents of TBACl. (B) Plot of $E_{1/2}$ against equivalents of chloride anion added for [2]rotaxane **1e**.

References

- 1. M. J. Hynes, J. Chem. Soc. Dalton Trans., 1993, 311-312.
- 2. B. Kratochvil, E. Lorah and C. Garber, Anal. Chem., 1969, 41, 1793-1796.