Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Solvent-effect-driven assembly of W/Cu/S cluster-based coordination polymers from the cluster precursor [Et₄N][Tp*WS₃(CuBr)₃] and CuCN: isolation, structures and enhanced NLO responses

Quan Liu,^{ad} Zhi-Gang Ren,^a Li Deng,^c Wen-Hua Zhang,^{*a} Li-Kuan Zhou,^a Xin Zhao,^a Zhen-Rong Sun,^c and Jian-Ping Lang^{*ab}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

^b Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, P. R. China

^c Department of Physics, East China Normal University, Shanghai 200062, P. R. China

^d College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China

Table of Contents

Fig. S1 (a) The positive-ion ESI mass spectrum of [Tp*WS₃Cu₃(µ₃-DMF)(CN)₃Cu(Py)] (2). (b) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_3(CN)]^+$ cation (at m/z = 793.9). (c) observed The the calculated patterns (up) and isotope patterns (bottom) of the $[(Tp*WS_3Cu_2)(Tp*WS_3Cu_3)(CN)_2]^+$ cation (at m/z = 1524.8). (d) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2(CN)_3]^+$ cation (at m/z = 1613.7). (e) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2Cu(CN)_4]^+$ cation (at m/z = 1702.7). (f) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2Cu_2(CN)_5]^+$ cation (at m/z = 1793.6). (g) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2Cu_3(CN)_6]^+ \text{ cation (at } m/z = 1882.5).$

(up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_2(CN)_2]^-$ anion (at m/z = 756.9). (c) The

Fig. S7 (a) The positive-ion ESI mass spectrum of $[Tp*WS_3Cu_3(\mu_3-DMF)(CN)_3Cu] \cdot 2(DMF)_{0.5}$. (b) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_3(CN)]^+$ cation (at m/z = 793.9). (c) The observed calculated patterns (up) and the isotope patterns (bottom) of the $[(Tp*WS_3Cu_2)(Tp*WS_3Cu_3)(CN)_2]^+$ cation (at m/z = 1524.8). (d) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2(CN)_3]^+$ cation (at m/z = 1613.7). (e) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2Cu(CN)_4]^+$ cation (at m/z = 1702.7). (f) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2Cu_2(CN)_5]^+$ cation (at m/z = 1793.6). (g) The observed patterns (up) and the calculated isotope patterns (bottom) of the

Fig. S8 (a) The negative-ion ESI mass spectrum of $[Tp*WS_3Cu_3(\mu_3-DMF)(CN)_3Cu]\cdot 2(DMF)_{0.5}$. (b) The observed
patterns (up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_2(CN)_2]^-$ anion (at m/z = 756.9). (c)
The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_3(CN)_3]^-$ anion (at m/z
= 845.9). (d) The observed patterns (up) and the calculated isotope patterns (bottom) of the
$[(Tp*WS_3Cu_3)Cu(CN)_4]^-$ anion (at m/z = 934.8). (e) The observed patterns (up) and the calculated isotope
patterns (bottom) of the $[(Tp*WS_3Cu_3)Cu_2(CN)_5]^-$ anion (at m/z = 1023.7)
The third-order NLO measurements of 1–5
Fig. S9 The DFWM signal for the DMF solutions of 6×10^{-5} M for 2 (a), 3 (b) and 4 (c) with 80 fs and 1.5 mm cell.
The black solid squares are experimental data, and the red solid curves theoretical fit
Table S1 Selected bond lengths (Å) and angles (°) for $2-5^a$
References

(a)

(b)

(d)

⁽e)

(f)

Fig. S1 (a) The positive-ion ESI mass spectrum of [Tp*WS₃Cu₃(µ₃-DMF)(CN)₃Cu(Py)] (2). (b) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_3(CN)]^+$ cation (at m/z = 793.9). (c) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_2)(Tp*WS_3Cu_3)(CN)_2]^+$ cation (at m/z = 1524.8). (d) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2(CN)_3]^+$ cation (at m/z = 1613.7). (e) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2Cu(CN)_4]^+$ cation (at m/z = 1702.7). (f) The observed patterns (up) and the calculated isotope patterns (bottom) of the [(Tp*WS₃Cu₃)₂Cu₂(CN)₅]⁺ cation (at m/z = 1793.6). (g) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2Cu_3(CN)_6]^+$ cation (at m/z = 1882.5).

Fig. S2 (a) The negative-ion ESI mass spectrum of $[Tp*WS_3Cu_3(\mu_3-DMF)(CN)_3Cu(Py)]$ (2). (b) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_2(CN)_2]^-$ anion (at m/z = 756.9). (c) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_3(CN)_3]^-$ anion (at m/z = 845.9).

(b)

(d)

Fig. S3 (a) The positive-ion ESI mass spectrum of $[Tp*WS_3Cu_3(\mu_3-DMF)(CN)_3Cu]$ (3). (b) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_3(CN)]^+$ cation (at m/z = 793.9). (c) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_2)(Tp*WS_3Cu_3)(CN)_2]^+$ cation (at m/z = 1524.8). (d) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2(CN)_3]^+$ cation (at m/z = 1613.7). (e) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2(CN)_3]^+$ cation (at m/z = 1613.7). (e) The observed patterns (up) and the calculated isotope patterns (up) and up the calculated isotope patterns (up) and up the calculated isotope patterns (up the up the

(a)

Fig. S4 (a) The negative-ion ESI mass spectrum of $[Tp^*WS_3Cu_3(\mu_3-DMF)(CN)_3Cu]$ (3). (b) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp^*WS_3Cu_2(CN)_2]^-$ anion (at m/z = 756.9). (c) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp^*WS_3Cu_3(CN)_3]^-$ anion (at m/z = 845.9). (d) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp^*WS_3Cu_3(CN)_3]^-$ anion (at m/z = 845.9). (d) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp^*WS_3Cu_3)Cu(CN)_4]^-$ anion (at m/z = 934.8).

(a)

(b)

Fig. S5 (a) The positive-ion ESI mass spectrum of $[Tp^*WS_3Cu_3(\mu_3-DMF)(CN)_3Cu]\cdot4aniline (4\cdot4aniline).$ (b) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp^*WS_3Cu_3(CN)]^+$ cation (at m/z = 793.9). (c) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp^*WS_3Cu_2)(Tp^*WS_3Cu_3)(CN)_2]^+$ cation (at m/z = 1524.8). (d) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp^*WS_3Cu_3)_2(CN)_3]^+$ cation (at m/z = 1613.7). (e) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp^*WS_3Cu_3)_2Cu(CN)_4]^+$ cation (at m/z = 1702.7).

Fig. S6 (a) The negative-ion ESI mass spectrum of $[Tp*WS_3Cu_3(\mu_3-DMF)(CN)_3Cu]\cdot4$ aniline (**4**·4aniline). (b) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_2(CN)_2]^-$ anion (at m/z = 756.9). (c) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_3(CN)_3]^-$ anion (at m/z = 845.9).

(b)

⁽c)

(e)

(f)

Fig. S7 (a) The positive-ion ESI mass spectrum of $[Tp*WS_3Cu_3(\mu_3-DMF)(CN)_3Cu]\cdot 2(DMF)_{0.5}$. (b) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp*WS_3Cu_3(CN)]^+$ cation (at m/z = 793.9). (c) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_2)(Tp*WS_3Cu_3)(CN)_2]^+$ cation (at m/z = 1524.8). (d) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2(CN)_3]^+$ cation (at m/z = 1613.7). (e) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2Cu(CN)_4]^+$ cation (at m/z = 1702.7). (f) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2Cu_2(CN)_5]^+$ cation (at m/z = 1793.6). (g) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp*WS_3Cu_3)_2Cu_3(CN)_6]^+$ cation (at m/z = 1882.5).

(b)

Fig. S8 (a) The negative-ion ESI mass spectrum of $[Tp^*WS_3Cu_3(\mu_3-DMF)(CN)_3Cu]\cdot 2(DMF)_{0.5}$. (b) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp^*WS_3Cu_2(CN)_2]^-$ anion (at m/z = 756.9). (c) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[Tp^*WS_3Cu_3(CN)_3]^-$ anion (at m/z = 845.9). (d) The observed patterns (up) and the calculated isotope patterns (bottom) of the $[(Tp^*WS_3Cu_3)Cu_2(CN)_4]^-$ anion (at m/z = 934.8). (e) The observed patterns (up) and the calculated isotope patterns (up) and up the calculated isotope patterns (up the up the

The third-order NLO measurements of 1-5

The solutions of $1 (6.0 \times 10^{-5} \text{ M})$, $2 (6.0 \times 10^{-5} \text{ M})$, $3 (6.0 \times 10^{-5} \text{ M})$, $4 (6.0 \times 10^{-5} \text{ M})$, and $5 (6.0 \times 10^{-5} \text{ M})$ in DMF were placed in a 1.5 mm quartz cuvette for the third-order NLO measurements. These five compounds were stable toward air and laser light under experimental conditions. As a reference, the optical nonlinearity of the standard sample CS₂ was also observed. The third-order NLO properties were measured using femtosecond DFWM technique with a Ti:Sapphire laser (Spectra-physics Spitfire Amplifier). The pulse width was determined to be 80 fs on a SSA25 autocorrelator. The operating wavelength was centered at 800 nm. The repetition rate of the pulses was 1 kHz. During the measurement the laser was very stable (rms < 0.1%). The input beam was split into two beams k_1 and k_2 with nearly equal energy by use of a beam splitter (BS) and then focused on a plot of the sample. The beam k_2 and k_1 beams could be adjusted during the measurement. The angle between the beams k_1 and k_2 were about 5°. When k_1 and k_2 were overlapped spatially in the sample, the generated signal beam k_3 passed through an aperture, recorded by a photodiode and then analyzed by a lock-in amplifier and computer.

Details of the equations used in calculations of third-order NLO properties

The third-order nonlinear optical susceptibility $\chi^{(3)}$ is measured *via* a comparison with that of a reference sample CS₂, calculated from the DFWM signal (*I*), the linear refractive index (*n*), the sample thickness (*L*) and absorption correction factor using eq. 1:^[1]

$$\chi_s^{(3)} = \left(\frac{I_s}{I_r}\right)^{1/2} \cdot \frac{L_r}{L_s} \cdot \left(\frac{n_s}{n_r}\right)^2 \cdot \frac{\alpha \cdot L \cdot \exp(\alpha L/2)}{1 - \exp(-\alpha L)} \cdot \chi_r^{(3)}$$
(1)

where the subscripts "*s*" and "*r*" represent the parameters for the sample and CS₂. And α is the linear absorption coefficient. The last fraction comes from the sample absorption and equals to 1 while the sample has no absorption around the employed laser wavelength. The values of $\chi_r^{(3)}$ and n_r for CS₂ are 6.7×10⁻¹⁴ esu and 1.632, respectively.^[2]

The third-order nonlinear refractive index n_2 in isotropic media is estimated through eq. 2:^[3]

$$n_2(esu) = \frac{12\pi\chi^{(3)}}{n^2}$$
(2)

where n is the linear refractive index of the solution.

The second-order hyperpolarizability γ of a molecule in isotropic media is related to the solution $\chi^{(3)}$ by Equation (3):^[4]

$$\gamma = \frac{\chi^{(3)}}{Nf^4} \tag{3}$$

where *N* is the number density of the solute per milliliter, and f^4 is the local field correction factor which is $[(n^2 + 2)/3]^4$ (*n* is the linear refractive index of solution).

(c)

Fig. S9 The DFWM signal for the DMF solutions of 6×10^{-5} M for **2**(a), **3**(b) and **4**(c) with 80 fs and 1.5 mm cell. The black solid squares are experimental data, and the red solid curves theoretical fit.

Table S1 Selected bond lengths (Å) for $2-5^a$

Complex 2			
W(1)-N(8)	2.268(10)	W(1)-N(6)#1	2.284(7)
W(1)-N(6)	2.284(7)	W(1)-S(1)	2.301(3)
W(1)-S(2)	2.304(3)	W(1)-S(2)#1	2.304(3)
W(1)-Cu(2)	2.6444(17)	W(1)-Cu(1)	2.6589(12)
W(1)-Cu(1)#1	2.6590(12)	Cu(1)-C(1)	1.870(10)
Cu(1)-S(1)	2.219(3)	Cu(1)-S(2)	2.222(3)
Cu(1)-O(1)	2.490(5)	Cu(2)-O(1)	2.679(10)
Cu(2)-C(2)	1.885(13)	Cu(2)-S(2)#1	2.209(3)
Cu(3)-N(2)#2	1.971(13)	Cu(3)-N(1)	1.992(11)
Cu(3)-N(1)#3	1.992(11)	Cu(3)-N(3)	2.093(16)
S(1)-Cu(1)#1	2.219(3)	N(2)-Cu(3)#2	1.971(13)
Cu(2)-S(2)	2.209(3)		

Complex 3

W(1)-N(4)	2.293(7)	W(1)-N(4)#1	2.293(7)
W(1)-N(6)	2.296(9)	W(1)-S(2)	2.306(3)
W(1)-S(1)#1	2.308(2)	W(1)-S(1)	2.308(2)
W(1)-Cu(1)	2.6560(18)	W(1)-Cu(2)#1	2.6614(11)
W(1)-Cu(2)	2.6614(11)	Cu(1)-C(1)	1.814(14)
Cu(1)-S(1)#1	2.223(3)	Cu(1)-S(1)	2.223(3)
Cu(1)-O(1)	2.499(10)	Cu(2)-O(1)	2.563(3)
C(2)-Cu(3)	1.898(8)	N(1)-Cu(3)#2	1.961(15)
N(2)-Cu(2)	1.902(9)	S(1)-Cu(2)	2.227(2)
S(2)-Cu(2)	2.218(3)	S(2)-Cu(2)#1	2.218(3)
Cu(3)-C(2)#3	1.897(8)	Cu(3)-N(1)#4	1.961(15)

Complex 4

W(1)-N(8)	2.273(9)	W(1)-N(6)	2.276(8)
		S28	

W(1)-N(10)	2.297(9)	W(1)-S(3)	2.306(3)
W(1)-S(1)	2.306(3)	W(1)-S(2)	2.313(3)
W(1)-Cu(3)	2.6607(15)	W(1)-Cu(2)	2.6637(15)
W(1)-Cu(1)	2.6698(15)	Cu(1)-C(1)	1.904(11)
Cu(1)-S(1)	2.222(3)	Cu(1)-S(2)	2.232(3)
Cu(1)-O(1)	2.391(9)	Cu(1)-Cu(3)	2.961(2)
Cu(1)-Cu(2)	2.990(2)	Cu(2)-C(2)	1.892(11)
Cu(2)-S(3)	2.222(3)	Cu(2)-S(2)	2.226(3)
Cu(2)-Cu(3)	2.974(2)	Cu(3)-C(3)#1	1.914(10)
Cu(3)-S(1)	2.225(3)	Cu(3)-S(3)	2.227(3)
Cu(4)-N(3)	1.917(12)	Cu(4)-N(1)	1.925(12)
Cu(4)-N(2)#2	1.983(13)	N(2)-Cu(4)#2	1.983(13)
C(3)-Cu(3)#3	1.914(10)		

W(1)-N(6)	2.274(9)	W(1)-N(10)	2.282(9)
W(1)-N(8)	2.285(9)	W(1)-S(1)	2.304(3)
W(1)-S(3)	2.305(3)	W(1)-S(2)	2.312(3)
W(1)-Cu(1)	2.6579(17)	W(1)-Cu(3)	2.6610(17)
W(1)-Cu(2)	2.6676(16)	Cu(1)-C(1)	1.883(12)
Cu(1)-S(2)	2.223(3)	Cu(1)-S(1)	2.228(3)
Cu(1)-Cu(3)	2.951(2)	Cu(1)-Cu(2)	2.964(2)
Cu(2)-C(2)	1.884(13)	Cu(2)-S(2)	2.215(3)
Cu(2)-S(3)	2.219(3)	Cu(2)-Cu(3)	3.002(2)
Cu(3)-C(3)	1.896(11)	Cu(3)-S(1)	2.210(3)
Cu(3)-S(3)	2.225(3)	Cu(4)-N(4)	1.904(11)
Cu(4)-N(1)#1	1.934(12)	Cu(4)-N(2)	1.974(12)
N(1)-Cu(4)#1	1.934(12)		

^{*a*} Symmetry codes for **2**: #1 *x*, -y + 1/2, *z*; #2 -x, -y, -z + 2; #3 *x*, -y - 1/2, *z*; for **3**: #1 *x*, -y + 3/2, *z*; #2 -x + 1/2, -y + 2, z - 1/2; #3 *x*, -y + 5/2, *z*; #4 -x + 1/2, -y + 2, z + 1/2; for **4**: #1 -x, y + 1/2, -z + 1/2; #2 -x, -y, -z; #3 -x, *y*

-1/2, -z + 1/2; for 5: #1 -x + 1, -y + 1, -z + 1; #2 -x + 1, -y, -z + 2; #3 -x + 2, -y + 1, -z + 1.

References

- (1) Yang, Y.; Samoc, M.; Prasad, P. N. J. Chem. Phys. 1991, 94, 5282-5290.
- (2) Orezyk, M. E.; Samoc, M.; Swiatkiewicz, J.; Prasad, P. N. J. Chem. Phys. 1993, 98, 2524–2533.
- (3) Jenekhe, S. A.; Lo, S. K.; Flom, S. R. Appl. Phys. Lett. 1989, 54, 2524-2526.
- (4) Mandal, B. K.; Bihari, B.; Sinha, A. K.; Kamath, M.; Chen, L. Appl. Phys. Lett. 1995, 66, 932–934.