Electronic Supplementary Information for

Application of three-coordinate copper(I) complexes with halide ligands in organic light-emitting diodes that exhibit delayed fluorescence

Masahisa Osawa,* Mikio Hoshino, Masashi Hashimoto, Isao Kawata, Satoshi Igawa, and Masataka Yashima

Contents

Experimental Detail

1. Crystal Structure determination
 Table S1 Crystallographic data for 5

2. NMR Experiments
 Fig. S1 1H NMR spectrum of 4 in CD$_2$Cl$_2$ at 220 K.
 Fig. S2 13C {1H} NMR spectrum of 4 in CD$_2$Cl$_2$ at 220 K.
 Fig. S3 31P {1H} NMR spectrum of 4 in CD$_2$Cl$_2$ at 220 K.
 Fig. S4 1H NMR spectrum of 5 in CD$_2$Cl$_2$ at 220 K.
 Fig. S5 13C {1H} NMR spectrum of 5 in CD$_2$Cl$_2$ at 220 K.
 Fig. S6 31P {1H} NMR spectrum of 5 in CD$_2$Cl$_2$ at 220 K.

3. Temperature dependence of lifetime
 Fig. S7 Temperature dependence of lifetime for 1.
 Fig. S8 Temperature dependence of lifetime for 3.
 Fig. S9 Temperature dependence of lifetime for 4.
 Fig. S10 Temperature dependence of lifetime for 5.

4. Theoretical Studies
 Fig. S11 Optimized core structures of 1 in the ground state (S$_0$), the singlet (S$_1$) and the triplet (T$_1$) excited states.
 Fig. S12 Optimized core structures of 2 in S$_0$, S$_1$, and T$_1$.
 Fig. S13 Optimized core structures of 3 in S$_0$, S$_1$, and T$_1$.
 Fig. S14 The sum of the angles around P1 and P2 in each optimized structure of 1.
 Fig. S15 The sum of the angles around P1 and P2 in each optimized structure of 3.
 Fig. S16 (A) The molecular structure of 3 determined using X-ray structural analysis. (B) The optimized S0 structure of 3.

5. Photophysical properties of amorphous films
 Table S2 Doping concentration dependence of PLQE for 2 in mCP

6. Luminance-Current Efficiency Characteristic
 Fig. S17 Luminance-Current Efficiency Characteristic

S1
Experimental Detail

1. Crystal Structure determination

Table S1 Crystallographic data for 5

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>C₄₂H₄₈BrCuP₂</td>
</tr>
<tr>
<td>formula weight</td>
<td>758.24</td>
</tr>
<tr>
<td>cryst syst</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>space group</td>
<td>Pna2₁</td>
</tr>
<tr>
<td>a / Å</td>
<td>20.5325(19)</td>
</tr>
<tr>
<td>b / Å</td>
<td>9.3801(9)</td>
</tr>
<tr>
<td>c / Å</td>
<td>19.4895(15)</td>
</tr>
<tr>
<td>V / Å³</td>
<td>1679.05 (4)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>dₐcad / g cm⁻³</td>
<td>1.342</td>
</tr>
<tr>
<td>T / K</td>
<td>90(2)</td>
</tr>
<tr>
<td>radiation</td>
<td>Mo Kα</td>
</tr>
<tr>
<td>(λ = 0.71073 Å)</td>
<td></td>
</tr>
<tr>
<td>µ / cm⁻¹</td>
<td>1.763</td>
</tr>
<tr>
<td>diffractometer</td>
<td>Rigaku AFC-8</td>
</tr>
<tr>
<td>max 2θ / deg</td>
<td>60</td>
</tr>
<tr>
<td>reflns collcd</td>
<td>24700</td>
</tr>
<tr>
<td>indep reflns</td>
<td>9995</td>
</tr>
<tr>
<td>(Rint = 0.0394)</td>
<td></td>
</tr>
<tr>
<td>no. of param refined</td>
<td>415</td>
</tr>
<tr>
<td>R₁, wR² (I > 2σ I)</td>
<td>0.0342, 0.0619</td>
</tr>
<tr>
<td>S</td>
<td>0.979</td>
</tr>
</tbody>
</table>

[a] R₁ = Σ||F₀| – |F₁||/Σ|F₀|, [b] wR² = [Σw(|F₀| – |F₁|)²/Σw|F₀|²]¹/²
2. NMR Experiments

Figure S1. 1H NMR spectrum of 4 in CD$_2$Cl$_2$ at 220 K.

Figure S2. 13C {1H} NMR spectrum of 4 in CD$_2$Cl$_2$ at 220 K.
Figure S3. 31P {1H} NMR spectrum of 4 in CD$_2$Cl$_2$ at 220 K.

Figure S4. 1H NMR spectrum of 5 in CD$_2$Cl$_2$ at 220 K.
Figure S5. 13C {1H} NMR spectrum of 5 in CD$_2$Cl$_2$ at 220 K.

Figure S6. 31P {1H} NMR spectrum of 5 in CD$_2$Cl$_2$ at 220 K.
3. Temperature dependence of lifetime

[Fitting procedure A for 1 and 4]

\(\tau_1 \) (decay time from of the T\(_1\) state), \(\tau_5 \) (decay time of the prompt fluorescence), and \(\Delta E(S_1 - T_1) \) (activation energy) were determined from a fit of Eq. 1 to measured \(\tau_{av} \) (25 points) by least-square method.

[Fitting procedure B for 2, 3, and 5]

\(\tau_5 \) (decay time of the prompt fluorescence) and \(\Delta E(S_1 - T_1) \) (activation energy) were determined from a fit of Eq. 1 to measured \(\tau_{av} \) (25 points) by least-square method.

Fig. S7 Temperature dependence of lifetime for 1.
Fig. S8 Temperature dependence of lifetime for 3. The $\tau_T = 102 \, \mu s$ measured at 77 K was used for the curve fitting by eq. 1.

Fig. S9 Temperature dependence of lifetime for 4.
Fig. S10 Temperature dependence of lifetime for 5. The $t_1 = 909 \mu s$ measured at 77 K was used for the curve fitting by eq. 1.

\[
\tau_{av} = \frac{3 + \exp(-\Delta E(S_1 - T_1)/k_B T)}{3/\tau_1 + 1/\tau_S \exp(-\Delta E(S_1 - T_1)/k_B T)}
\]

$\tau_1 = 909 \mu s$

$\Delta E(S_1 - T_1) = 710 \text{ cm}^{-1}$

$\tau_S = 123 \text{ ns}$

Fig. S11 Optimized core structures of 1 in the ground state (S_0), the singlet (S_1) and the triplet (T_1) excited states.
Fig. S12 Optimized core structures of 2 in S_0, S_1, and T_1.

Fig. S13 Optimized core structures of 3 in S_0, S_1, and T_1.

Fig. S14 The sum of the angles around P1 and P2 in each optimized structure of 1.
Fig. S15 The sum of the angles around P1 and P2 in each optimized structure of 3.

Fig. S16 (A) The molecular structure of 3 determined using X-ray structural analysis. (B) The optimized S_0 structure of 3.
Table S2 Doping concentration dependence of PLQE for 2 in mCP; \(\lambda_{\text{exc}} = 355 \text{ nm} \).

6. Luminance-Current Efficiency Characteristic

<table>
<thead>
<tr>
<th>Doping concentration (wt%)</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLQE / %</td>
<td>65</td>
<td>71</td>
<td>61</td>
<td>38</td>
</tr>
</tbody>
</table>

Fig. S17 Luminance-Current Efficiency Characteristic