Tuning luminescence behaviors of a chloroplatinum(II) complex by component exchanges of dynamic acylhydrazone bond

Jianjun Liang, Huanting Huang, Lipeng He, Nijuan Liu, Yanhuan Chen and Weifeng Bu*

Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province, China, Fax: +86 931 8912582; E-mail: buwf@lzu.edu.cn

Materials and Instruments.

All solvents and reagents were of reagent grade quality and purchased commercially. 1H NMR and 13C NMR spectra were recorded on a Bruker 400 MHz spectrometer, performing in CDCl$_3$, D$_2$O or d$_6$-DMSO solutions and using TMS as an internal standard. Electrospray ionization mass spectra (ESI-MS) were performed with Bruker microTOF-Q II. Dynamic light scattering (DLS) measurements were performed on a Brookhaven BI-200SM spectrometer. TEM images were obtained with an FEI Tecnai F30 operating at 300 kV. UV-vis absorption spectra were recorded by using a SHIMADZU UV-2550 spectrophotometer. Fluorescence microscopy measurements were carried out on a Leica DM4000B. All measurements were carried out at room temperature.

In order to avoid the systematic errors, we used the same measurement conditions: the same concentrations of Pt-bzimpy (0.45 mM) and T (0.15 mM), the same cells, the same spectrofluorimeter of Hitachi F-7000, the same λ_{ex} at 420 nm, the same gap width of 5 nm, and the measuring temperature at 25 $^\circ$C. Thus, the initial luminescence intensities of Pt-bzimpy-T varied in the allowable error from 2045 to 2068. So, the luminescence varieties of the component exchanges could be compared on the basis of their data.

Hexaethylene glycol monomethyl ether iodide, the chloroplatinum(II) complex of 2,6-bis(benzimidazol-2'-yl)pyridine bearing two hexaethylene glycol methyl ether groups (Pt-bzimpy) and benzoyl hydrazide were prepared according to the related literatures.

tripodal hydrazone-linked sodium benzene sulfonate (T)

1,3,5-tricarboxylic acid benzene (1 g, 4.0 mmol) was added to a hot solution of 2-formylbenzenesulfonate sodium (2.7 g, 13.2 mmol) in 100 mL ethanol. The resulting mixture was refluxed for 3 d, and then cooled to room temperature. Precipitate was collected via filter and
washed by hot ethanol. Pure compound T was obtained as a white solid (2.4 g, 74 % yield). 1H NMR (δ, ppm, d6-DMSO): 7.43 – 7.39 (m, 6H), 7.82 – 7.94 (m, 3H), 8.06 – 8.03 (dd, 3H), 9.41 (s, 3H), 12.47 (s, 3H). 13C NMR (δ, ppm, d6-DMSO): 126.5, 127.4, 129.0, 129.9, 130.9, 131.7, 134.2, 147.4, 149.0, 162.8. HR-ESI-MS: m/z Cacled for [C30H21N6O12S3]3–: 251.0132, found 251.0132, Cacled for [C30H23N6O12S3]–: 755.0542, found 755.0535. Anal. Cacled for C30H21N6O12S3Na3·3H2O·C2H5OH: C 41.65, H 3.60, N 9.11. Found: C 41.53, H 3.56, N 9.16.

Tripodal hydrazone-linked benzene sulfonate (S)

The procedure was similar to that for the preparation of T, except benzoyl hydrazide H (1.0 g, 7.4 mmol) was used in place of 1,3,5-tricarbohydrazine benzene. 2-formylbenzenesulfonate sodium was adjusted to 2.3 g (11.1 mmol). S was obtained as a white solid (1.8 g, 74 % yield). 1H NMR (δ, ppm, d6-DMSO): 7.42 – 7.36 (m, 2H), 7.52 – 7.48 (t, 2H), 7.60 – 7.56 (t, 1H), 7.81 – 7.79 (t, 1H), 8.01 – 7.96 (t, 3H), 9.35 (s, 1H), 12.18 (s, 1H). 13C NMR (δ, ppm, d6-DMSO): 125.8, 126.8, 127.8, 128.3, 128.8, 131.3, 131.6, 133.4, 146.9, 148.0, 163.3. MS (ESI): m/z Cacled for [C14H11N2O4S]– 303.0445, found 303.0449. Anal. Cacled for C14H11N2O4SNa·1.5H2O: C 47.59, H 3.99, N 7.93. Found: C 47.33, H 3.91, N 7.96.

Benzaldehyde with hexaethylene glycol methyl ether groups (A1)

The mixture of 4-hydroxybenzaldehyde (54 mg, 0.44 mmol) and K2CO3 (92 mg, 0.67 mmol) in DMSO (10 mL) was stirred for 0.5 h at 90 °C. Then, a solution of compound I (0.2 g, 0.44 mmol) in DMSO (5 mL) was added slowly. The mixture was stirred for another 1 d and cooled to room temperature. After removal of the solvents in vacuo, the residue was redissolved in H2O and extracted with CH2Cl2. The combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to yield a crude product. Pure compound A was obtained as a highly viscous liquid by column chromatography on silica gel (ethyl acetate/ethanol, 4:1, 0.12 g, 67 % yield). 1H NMR (δ, ppm, CDCl3): 3.37 (s, 3H), 3.54 – 3.53 (t, 2H), 3.69 – 3.62 (m, 16H), 3.74 – 3.72 (m, 2H), 3.90 – 3.88 (t, 2H), 4.23 – 4.20 (t, 2H), 7.03 – 7.01 (dd, 2H), 7.84 – 7.82 (dd, 2H), 9.88 (s, 1H). 13C NMR (δ, ppm, CDCl3): 59.2, 68.0, 69.7, 70.8, 71.2, 72.1, 115.1, 130.3, 132.1, 164.1, 191.0. MS (ESI): m/z Cacled for [C20H32O8Na]–: 423.1994, found 423.1995. Anal. Cacled for C20H32O8·7H2O: C 45.62, H 8.81. Found: C 45.83, H 8.91.

Fig. S1 Emission spectra of \(\text{Pt-bzimpy} \) (0.45 mM), \(\text{Pt-bzimpy} + S \) (\(\text{Pt-bzimpy} \), 0.45 mM and \(S \), 0.45 mM), and \(\text{Pt-bzimpy} + T \) (\(\text{Pt-bzimpy} \), 0.45 mM and \(T \), 0.15 mM).

Fig. S2 TEM images of \(\text{Pt-bzimpy-T} \) (\(\text{Pt-bzimpy} \), 0.45 mM and \(T \), 0.15 mM).

Fig. S3 Plots of emission at 632 nm for \(\text{Pt-bzimpy-T} \) (\(\text{Pt-bzimpy} \), 0.45 mM and \(T \), 0.15 mM), versus (a) increasing temperature and (b) pH Changes. Plots of (c) emission for \(\text{Pt-bzimpy-T} \) (\(\text{Pt-bzimpy} \), 0.45 mM and \(T \), 0.15 mM) and (d) integration of imine hydrogen of \(T \) (4 mM, in \(\text{D}_2\text{O} \)) in \(^1\text{H} \) NMR spectra versus time at pH 2.
Fig. S4 Time-dependent emission intensities of Pt-bzimpy-T (Pt-bzimpy, 0.45 mM and T, 0.15 mM) upon the additions of (a) 9 equiv A1 and (b) H1 per T at pH 4, respectively.

Fig. S5 Time-dependent emission intensities of Pt-bzimpy-T (Pt-bzimpy, 0.45 mM and T, 0.15 mM) upon the additions of (a) 9 equiv A1 and (b) H1 per T at pH 2, respectively.

Fig. S6 TEM images of aldehyde exchanges upon successive additions of (a) 9 equiv A1 and (b) 81 equiv A2 per T to Pt-bzimpy-T (Pt-bzimpy, 0.45 mM and T, 0.15 mM) at pH 4.
Fig. S7 (a) 1H NMR profiles of twice hydrazine exchanges upon additions of 9 equiv H1 and 81 equiv H2 to T (4 mM) at pH 4. (b) Luminescence and (c) DLS plots of twice hydrazine exchanges upon additions of 9 equiv H1 and 81 equiv H2 per T to Pt-bzimpy-T (Pt-bzimpy, 0.45 mM and T, 0.15 mM) at pH 4.

Fig. S8 TEM images of hydrazine exchanges upon successive additions of (a) 9 equiv H1 and (b) 81 equiv H2 per T to Pt-bzimpy-T (0.15 mM) at pH 4
Fig. S9 1H NMR spectra of component exchanges upon addition of 9 equiv A1 to T (4 mM) at pH 4. From bottom to top: pure T, T + A1 at 2.5 h, 3h, 4.5 h, 7 h, 10 h, and 4 d.

Fig. S10 (a) DLS and (b) TEM plots of Pt-bzimpy (0.45 mM) upon addition of 1 equiv S.

Table S1 The constants in the nonlinear relationship of emission intensities (y) at 632 nm versus the molar ratios (x) of A1/T or H1/T.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>aldehyde exchange</td>
<td>626</td>
<td>6.36×10^5</td>
<td>0.185</td>
<td>6.16</td>
</tr>
<tr>
<td>hydrazine exchange</td>
<td>456</td>
<td>7309</td>
<td>0.535</td>
<td>1.214</td>
</tr>
</tbody>
</table>