Towards understanding the design of dual-modal MR/fluorescent probes to sense zinc ions

C. Rivas, G. J. Stasiuk, M. Sae-Heng, and N. J. Long

Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.

School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX

Table of contents

Figure S1: $^1$H NMR spectrum of 1, CDCl$_3$, 298 K.
Figure S2: CIMS spectrum of 1.
Figure S3: $^1$H NMR spectrum of 2, CDCl$_3$, 298 K.
Figure S4: ESMS spectrum of 2.
Figure S5: $^1$H NMR spectrum of L1, CDCl$_3$, 298 K.
Figure S6: ESMS spectrum of L1.

Figure S7. UV/vis. spectra of Gd.L1 (100 $\mu$M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of respective metal ion.

Figure S8. Fluorescence emission spectra of Gd.L1 (1 mM) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Ca$^{2+}$.

Figure S9: $^1$H NMR spectrum of 4, CDCl$_3$, 298 K.
Figure S10: HR ESMS spectrum of 4.
Figure S11: $^1$H NMR spectrum of 5, CDCl$_3$, 298 K.
Figure S12: HR ESMS spectrum of 5.
Figure S13: $^1$H NMR spectrum of L2, D$_2$O, 298 K.
Figure S14: HR ESMS spectrum of L2.
Figure S15: ESI MS spectrum of GdL2.

Figure S16: UV/vis. spectra of GdL2 (100 $\mu$M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Cu$^{2+}$.

Figure S17. UV/vis. spectra of GdL2 (100 $\mu$M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Ca$^{2+}$.

Figure S18. UV/vis. spectra of GdL2 (100 $\mu$M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Mg$^{2+}$.

Figure S19: $^1$H NMR spectrum of 6, CDCl$_3$, 298 K.
Figure S20: HR ESMS spectrum of 6.
Figure S21: $^1$H NMR spectrum of 7, CDCl$_3$, 298 K.
Figure S22: HR ESMS spectrum of 7.
Figure S23: $^1$H NMR spectrum of L3, CDCl$_3$, 298 K.
Figure S24: HR ESMS spectrum of L3.
Figure S25: HR ESMS spectrum of GdL3.

Figure S26: UV-vis spectrum of GdL3 (100 $\mu$M) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4).

Figure S27: Fluorescence spectra of GdL3 (100 $\mu$M) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 10 eq.) of Zn$^{2+}$.
Figure S1: $^1$H NMR spectrum of 1, CDCl$_3$, 298 K.

Figure S2: CIMS spectrum of 1.
Figure S3: $^1$H NMR spectrum of 2, CDCl$_3$, 298 K.

Figure S4: ESMS spectrum of 2.
Figure S5: $^1$H NMR spectrum of L1, CDCl$_3$, 298 K.

Figure S6: ESMS spectrum of L1.
**Figure S7.** UV/vis. spectra of GdL\(^1\) (100 \(\mu\)M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of respective metal ion.

![UV/vis. spectra of GdL\(^1\) (100 \(\mu\)M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of respective metal ion.](image)

**Figure S8.** Fluorescence emission spectra of GdL\(^1\) (1 mM) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Ca\(^{2+}\).

![Fluorescence emission spectra of GdL\(^1\) (1 mM) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Ca\(^{2+}\).](image)
**Figure S9:** $^1$H NMR spectrum of 4, CDCl$_3$, 298 K.

**Figure S10:** HR ESMS spectrum of 4.
**Figure S11:** $^1$H NMR spectrum of 5, CDCl$_3$, 298 K.

**Figure S12:** HR ESMS spectrum of 5.
Figure S13: $^1$H NMR spectrum of $L^2$, D$_2$O, 298 K.

Figure S14: HR ESMS spectrum of $L^2$. 
**Figure S15:** ESI MS spectrum of GdL².

**Figure S16:** UV/vis. spectra of GdL² (100 μM) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Cu²⁺.
**Figure S17.** UV/vis. spectra of GdL$_2$ (100 μM) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Ca$^{2+}$.

**Figure S18.** UV/vis. spectra of GdL$_2$ (100 μM) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Mg$^{2+}$. 
Figure S19: $^1$H NMR spectrum of 6, CDCl$_3$, 298 K.

Figure S20: HR ESMS spectrum of 6.
Figure S21: $^1$H NMR spectrum of 7, CDCl$_3$, 298 K.

Figure S22: HR ESMS spectrum of 7.
Figure S23: $^1$H NMR spectrum of $L^3$, CDCl$_3$, 298 K.

Figure S24: HR ESM spectrum of $L^3$. 
**Figure S25:** HR ESMS spectrum of GdL$_3$.

**Figure S26:** UV-vis spectrum of GdL$_3$ (100 μM) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4).

**Figure S27:** Fluorescence spectra of GdL$_3$ (100 μM) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 10 eq.) of Zn$^{2+}$.