Terbium doped SnO$_2$ nanoparticles as white emitter and SnO$_2$:5Tb/Fe$_3$O$_4$ magnetic luminescent nanohybrid for hyperthermia application and biocompatibility with HeLa cancer cells

Laishram Priyobarta Singh, Ningthoujam Premananda Singh, Sri Krishna. Srivastava*

Department of Chemistry, Manipur University, Imphal-795003, Manipur, India.

*Corresponding author:

E-mail: sksrivastava01@yahoo.co.in
Phone: 08974010573, Fax: 0385-2435831
SI 1. EDAX spectra of SnO$_2$:5Tb nanoparticles.

SI 2. TGA-DTA for SnO$_2$:5Tb nanoparticles
SI 3. Emission spectra of pure SnO₂ nanoparticles at different annealing temperatures as-prepared, 500 and 900 °C. The emission peaks are obtained by exciting at 235 nm.

SI 4. Excitation spectrum at 545 nm emission wavelength for SnO₂:5Tb nanoparticles annealing at 900 °C.
SI 5. Magnetisation (H) verses applied magnetic field (H) for pure Fe$_3$O$_4$ and SnO$_2$:5Tb/Fe$_3$O$_4$ nanohybrid.

SI 6. Emission spectra of SnO$_2$:5Tb/Fe$_3$O$_4$ nanohybrid excited at 370 nm.
SI 7. Images of cell treated with SnO$_2$:5Tb/Fe$_3$O$_4$ at different concentration of nanohybrid (SnO$_2$:5Tb/Fe$_3$O$_4$) (a) 10 μg/L (b) 20 μg/L (c) 80 μg/L and 100 μg/L, respectively.