SUPPORTING INFORMATION

Cyclometallated platinum(II) complexes containing NHC ligands; synthesis, characterization, photophysics and their application as emitters in OLEDs.

A. I. Solomatina,1 D. V. Krupenya,1 V. V. Gurzhii,2 I. Zlatkin,1 A. P. Pushkarev,3 M. N. Bochkarev,3 N. A. Besley,4 E. Bichoutskaia,4 S. P. Tunik1*

1 Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg, Universiteskii pr. 26, 198504 Russian Federation, tel/fax: +7 (812) 3241258, e-mail: stunik@inbox.ru

2 Saint-Petersburg State University, Institute of Earth Sciences, Saint-Petersburg, University emb. 7/9, 199034, Russian Federation, Tel: +7 (812) 3506688, e-mail: vladgeo17@mail.ru

3 G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation. Fax: +7 (831) 4627497; e-mail: mboch@iomc.ras.ru

4 School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK tel. +44 (115) 8468465; e-mail: Elena.Bichoutskaia@nottingham.ac.uk

Ref. No.:
Complex 1. Selected bond distances (Å): Pt1–C11 2.001(7), Pt1–C12 1.951(7), Pt1–N1 2.093(5), Pt1–Br1 2.469(1). Selected angles (˚): C11–Pt1–Br1 175.7(2), C12–Pt1–Br1 90.4(2), C11–Pt1–C12 93.7(3), N1–Pt1–Br1 94.1(2), C11–Pt1–N1 81.8(3), C11–Pt1–C12–N3 73.6(6).

Complex 2. Selected bond distances (Å): Pt1–C11 1.976(4), Pt1–C12 1.963(5), Pt1–N1 2.075(3), Pt1–Cl1 2.389(1). Selected angles (˚): C11–Pt1–Cl1 173.9(1), C12–Pt1–Cl1 90.6(1), C11–Pt1–C12 94.6(2), N1–Pt1–Cl1 94.0(1), C11–Pt1–N1 80.8(2), C11–Pt1–C12–N3 72.8(4).

Complex 5. Selected bond distances (Å): Pt1–C11 1.976(3), Pt1–C12 1.960(3), Pt1–N1 2.074(3), Pt1–Cl1 2.3960(7). Selected angles (˚): C11–Pt1–Cl1 176.45(9), C12–Pt1–Cl1 89.29(8), C11–Pt1–C12 94.2(1), N1–Pt1–Cl1 95.11(7), C11–Pt1–N1 81.4(1), C11–Pt1–C12–N3 79.7(3).

Complex 6. Selected bond distances (Å): Pt1–C11 1.991(3), Pt1–C12 1.970(4), Pt1–N1 2.069(3), Pt1–Cl1 2.4047(9). Selected angles (˚): C11–Pt1–Cl1 174.5(1), C12–Pt1–Cl1 90.0(1), C11–Pt1–C12 94.4(2), N1–Pt1–Cl1 94.74(9), C11–Pt1–N1 80.8(1), C11–Pt1–C12–N3 66.5(4).

Figure S1. Solid state structure of complexes 1, 2, 5 and 6.
Figure S2. 1H NMR spectrum of 1 (CDCl$_3$, 298 K).

Figure S3. 1H-1H COSY NMR spectrum (aromatic region) of 1 ((CD$_3$)$_2$CO, 298 K).
Figure S4. 1H NMR spectrum of 2 (CDCl$_3$, 298 K).

Figure S5. 1H NMR spectrum of 3 (CDCl$_3$, 298 K).
Figure S6. 1H NMR spectrum of 4 (CDCl$_3$, 298 K).

Figure S7. 1H-1H COSY NMR spectrum (aromatic region) of 4 (CDCl$_3$, 298 K).
Figure S8. 1H NMR spectrum of 5 (CDCl$_3$, 298 K).

Figure S9. 1H NMR spectrum of 6 (CDCl$_3$, 298 K).
Figure S10. 1H-1H COSY NMR spectrum (aromatic region) of 6 (CDCl$_3$, 298 K).
Figure S11. ESI-MS of complex 1.

Figure S12. ESI-MS of complex 2.
Figure S13. ESI-MS of complex 3.

Figure S14. ESI-MS of complex 4.
Figure S15. ESI-MS of complex 5.

Figure S16. ESI-MS of complex 6.
Figure S17. Excitation spectra of complexes 1-6 in solution CH$_2$Cl$_2$. Emission wavelength 480 nm.

Figure S18. Emission spectra of complexes 1-6 in solid state. Excitation wavelength 390 nm.
Figure S19. Excitation spectra of complexes 1-6 in solid state. Emission wavelength 515 nm.

Figure S20. Correlation between Pt-C\textsubscript{(N^C)} distance and quantum yield (left), lifetime (right) of emission for the orthometallated phenyl-pyridine platinum complexes (1-3, 5, 6) in degassed dichloromethane. Pearson correlation coefficients are -0.88 and -0.82, respectively. The compound 4 (benzoquinoline complex) is given for comparison.

Table S1. Pt-C\textsubscript{(N^C)} distance in solid state, quantum yield and lifetime of emission in degassed dichloromethane.

<table>
<thead>
<tr>
<th>Pt-C\textsubscript{(N^C)}, Å</th>
<th>τ\textsubscript{deg}, µs</th>
<th>Φ\textsubscript{deg}, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.001(7)</td>
<td>1.04</td>
</tr>
<tr>
<td>2</td>
<td>1.976(4)</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>2.031(4)</td>
<td>0.20</td>
</tr>
<tr>
<td>4</td>
<td>2.027(7)</td>
<td>1.41</td>
</tr>
<tr>
<td>5</td>
<td>1.976(3)</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>1.991(3)</td>
<td>1.22</td>
</tr>
</tbody>
</table>
Figure S21. Emission spectrum of complexes 1-6 in solid state (solid lines) and solution (dashed lines). Excitation wavelengths 390 nm and 385 nm respectively.
Figure S22. Emission spectrum of complexes 1-6 in solid state and in tablets KBr. Excitation wavelengths 390 nm.
Figure S23. CIE 1931 chromaticity diagram of devices A-F.

Figure S24. Current efficiency for OLED devices A-F.
Figure S25. Power efficiency for OLED devices A-F.