Supporting Information

Sodium and rhodium complexes of a spirocyclic Te₅ dianion supported by

P₂N₂ rings

Andreas Nordheider,^{*a,b*} Kasun S. Athukorala Arachchige,^{*a*} Alexandra M. Z. Slawin^{*a*}, J. Derek Woollins^{*a*} and Tristram Chivers^{*b**}

Table of Contents

I.	Experimental Section	2
П.	X-ray crystallographic data	4
Ш.	References	5

I. Experimental Section

NMR spectra were recorded at 25 °C using a *JEOL DELTA EX 270*. 85 % H₃PO₄ was used as an external standard for ³¹P{¹H} NMR spectra. Chemical shifts (δ) are given in parts per million (ppm) relative to the solvent peaks.¹ Coupling constants (*J*) are given in Hertz (Hz). Mass spectrometry was performed on a Thermofisher LTQ Orbitrap XL at the EPSRC UK National MS Facility in Swansea. X-ray analysis was performed by a Rigaku Mo MM007 (dual port) high brilliance generator with Saturn 70 and Mercury CCD detectors, rotating anode/confocal optics and two XStream LT accessories at -180(1) °C, or a Nonius KappaCCD diffractometer at 173(2) K. All data were collected with Mo-K α radiation (λ = 0.71073 Å) and corrected for Lorentz and polarisation effects. The data for compounds **4** and **5** were collected and processed using CrystalClear (Rigaku).²

The crystal structures were solved using direct methods³ or heavy-atom Patterson methods⁴ and expanded using Fourier techniques.⁵ The non-hydrogen atoms were refined anisotropically, hydrogen atoms were refined using the riding model. All calculations were performed using CrystalStructure⁶ crystallographic software package and SHELXL-97.⁷

All synthetic manipulations were performed under an atmosphere of dry argon using standard Schlenk-line techniques and/or a Saffron glovebox running with argon unless otherwise stated. All glass apparatus was stored in a drying oven (120 °C) and flame-dried *in vacuo* (10⁻³ mbar) before use. Dry solvents were collected from an *MBraun* solvent system under a nitrogen atmosphere and stored in Schlenk flasks over 4 Å molecular sieves or were dried and purified using common procedures.⁸ All chemicals were purchased from *Sigma Aldrich* and used without further purification. [Li(tmeda)]₂**1**,⁹⁸ [Na(tmeda)]₂**1**,¹⁰ and [Cp*RhCl₂]₂ were synthesised according to the literature procedures.¹¹

4: $[Na(tmeda)]_2 1$ (500 mg, 0.57 mmol) was suspended in toluene and cooled to -78 °C. A solution of I₂ (72 mg, 0.28 mmol) in toluene (15 mL) was maintained at -78 °C and added dropwise over 15 min by cannula. The reaction mixture was stirred for 30 min before being allowed to warm to RT and then stirred for an additional 1 h. The precipitate was removed by filtration, dried and redissolved in *n*-hexane at -40 °C (very low solubility). After three days a few extremely air and thermally sensitive crystals suitable for X-ray crystallography were isolated. Mass spectrometry did not give any data that could be attributed to the product **4**. Elemental analysis was precluded due to rapid decomposition of the material. A new resonance in the ³¹P NMR spectrum of the reaction mixture in toluene is tentatively attributed to **4**: ³¹P NMR (109.37 MHz, C₆D₆ capillary): $\delta = -73.7$ (s, ¹*J*(P,Te) = 1198 Hz).

5: [Li(tmeda)]₂1 (300 mg, 0.35 mmol) was suspended in toluene and cooled to -78 °C. A solution of [Cp*RhCl₂]₂¹¹ (109 mg, 0.18 mmol) in toluene (15 mL) was maintained at -78 °C and added dropwise over 15 min by cannula. The reaction mixture was stirred for 30 min before being allowed to warm to RT and then stirred for an additional 1 h. The mixture was then filtered to remove the deposited elemental tellurium and the solvent was removed under reduced pressure. The solid residue was dissolved in *n*-hexane, filtered and the solvent was removed to afford a dark reddish black material (Yield 9 %). Recrystallisation from *n*-hexane afforded black crystals that were filtered, dried and identified as **5**. MS (ESI⁺, *m/z*), 1580.05 [*M*⁺] (calculated for C₄₂H₈₇N₈P₄RhTe₅: 1580.04 [*M*⁺]).³¹P NMR (109.37 MHz, [D₈]toluene): $\delta = -123.4$ (s, ¹*J*(P,Te) = 1136 Hz), -126.8 (d, ¹*J*(P,Te) = 1270 Hz; ²*J*(P,Rh) = 4.5 Hz); attempts to record the ¹²⁵Te NMR spectrum were thwarted by a combination of the low solubility and decomposition of **5** in solution with formation of elemental tellurium.

II. X-ray crystallographic data

Table 1. Crystallographic data for compounds 4 and 5.

Compound	4	5
Empirical formula	$C_{47.5}H_{108}N_{12}Na_2P_4Te_5$	$C_{42}H_{87}N_8P_4RhTe_5$
Formula weight	1655.33	1569.00
Temperature (K)	93	93
Crystal colour, habit	red chunk	red needle
Crystal dimensions (mm ³)	0.09 x 0.05 x 0.03	0.21 x 0.02 x 0.01
Crystal system	orthorhombic	monoclinic
<i>a</i> (Å)	32.355(3)	15.980(3)
<i>b</i> (Å)	34.276(3)	19.756(4)
<i>c</i> (Å)	25.584(2)	18.904(4)
α (°)	90.0000	90.0000
β (°)	90.0000	95.606(4)
γ (°)	90.0000	90.0000
Volume (Å ³)	28373(4)	5939(2)
Space group	Fdd2	$P_1 2_1 / c_1$
Z value	16	4
D_{calc} (g/cm ³)	1.550	1.754
F_{000}	13104.00	3040.00
μ (Mo- K_{α}) (cm ⁻¹)	2.173	2.837
No. of reflections measured	44221	79608
R _{int}	0.1342	0.1111
Min. and max. Transmissions	0.645, 0.937	0.729, 0.972
Reflection/parameter ratio	11899 (637)	10824 (569)
Residuals: $R_1 (I > 2.00\sigma(I))$	0.0508	0.0490
Residuals: wR_2 (all reflections)	0.0986	0.1352
Goodness of fit indicator	0.842	0.979
Max. peak in final diff. map	0.85	2.70
(e ⁻ /Å ³)		
Min. peak in final diff. map	-0.73	-1.17
$(e^{-}/Å^{3})$		

III. References

- 1 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman and B. M. Stoltz, *Organometallics*, 2010, **29**, 2176.
- 2 a) CrystalClear 1.6: Rigaku Corporation, 1999; b) CrystalClear Software User's Guide, Molecular Structure Corporation©, 2000; c) J. W. Pflugrath, *Acta Crystallogr.*, 1999, D55, 1718.
- SIR97: A. Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A.
 Moliterni, G. Polidori and R. Spagna, J. Appl. Cryst., 1999, 32, 115.
- 4 PATTY: P. T. Beurskens, G. Admiraal, H. Behm, G. Beurskens, J. M. M. Smits and C. Smykalla, *Z. Kristallogr.* 1991, **Suppl. 4**, 99.
- 5 DIRDIF99: P. T. Beuerskens, G. Admiraal, G. Beuerskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits, The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1999.
- a) CrystalStructure 3.8.1: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2000–2006). 9009 New Trails Dr. The Woodlands, TX 77381 USA; b) CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.
- 7 G. M. Sheldrick, *Acta Crystallogr.*, 2008, A64, 112.
- 8 D. D. Perrin and W. L. F. Armarego, *Purification of Laboratory Chemicals*, Oxford, Butterworth-Heinemann, 6th edn., 2009.
- 9 G. G. Briand, T. Chivers and M. Parvez, Angew. Chem., Int. Ed., 2002, 41, 3468.
- A. Nordheider, T. Chivers, R. Thirumoorthi, K. S. Athukorala Arachchige, A. M. Z. Slawin, J.
 D. Woollins and I. Vargas-Baca, *Dalton Trans.*, 2013, 42, 3291.
- 11 C. White, A. Yates and P. M. Maitlis, *Inorg. Synth.*, 1992, **29**, 228.