Magnetic and Structural Properties of Dinuclear Singly Bridged-Phenoxido Metal(II) Complexes

Salah S. Massoud, a Mark Spell, a,† Catherine C. Ledet, a Thomas Junk, a Radovan Herchel, b Roland C. Fischer, c Zdeněk Trávníček, *b Franz A. Mautner, *d

a Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, U.S.A.
b Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
c Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010 Graz, Austria
d Institut für Physikalische and Theoretische Chemie, Technische Universität Graz, Stremayrgasse 9/II, A-8010, Graz, Austria
Fig. S1. ESI-MS of complex 1 in acetonitrile
Fig. S2. ESI-MS of complex 2 in acetonitrile
Fig. S3. ESI-MS of complex 3 in acetonitrile
Fig. S4. ESI-MS of complex 4 in acetonitrile
Fig. S5. ESI-MS of complex 5 in acetonitrile
Fig. S6: Packing plot of 1.

Fig. S7: Packing plot of 2.
Fig. S8: Packing plot of 3.

Fig. S9: Packing plot of 4.
Fig. S10: Packing plot of 5.

Fig. S11. A part of the crystal structure of 1 showing the formation of a supramolecular tetramer utilizing the O-H···Cl hydrogen bonds (blues dotted lines).
Fig. S12 The magnetic data for complex 3: *Left:* the temperature dependence of the effective magnetic moment and molar magnetization measured at $B = 1$ T. *Right:* the isothermal magnetizations measured at $T = 2$, 5 and 10 K. Open circles represent the experimental data and solid lines represent the best fit using equation 1, with $J = -30.2$ cm$^{-1}$, $D = 0$ cm$^{-1}$ (fixed), $g = 2.24$, $\chi_{\text{TIP}} = 3.4 \times 10^{-9}$ m3mol$^{-1}$, $x_{\text{Pt}} = 0.37\%$.
Table S1. Selected bond distances (Å) and angles (°) for 1.

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Value</th>
<th>Bond/Distance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(1)-O(1)</td>
<td>2.087(4)</td>
<td>Co(1)-N(3)</td>
<td>2.130(5)</td>
</tr>
<tr>
<td>Co(1)-O(3)</td>
<td>2.148(4)</td>
<td>Co(1)-N(2)</td>
<td>2.162(6)</td>
</tr>
<tr>
<td>Co(1)-N(1)</td>
<td>2.187(5)</td>
<td>Co(1)-C(13)</td>
<td>2.4298(16)</td>
</tr>
<tr>
<td>Co(2)-N(6)</td>
<td>2.085(5)</td>
<td>Co(2)-O(1)</td>
<td>2.130(4)</td>
</tr>
<tr>
<td>Co(2)-O(4)</td>
<td>2.178(5)</td>
<td>Co(2)-Cl(4)</td>
<td>2.3700(18)</td>
</tr>
<tr>
<td>Co(3)-N(8)</td>
<td>2.105(5)</td>
<td>Co(3)-O(2)</td>
<td>2.119(4)</td>
</tr>
<tr>
<td>Co(3)-O(5)</td>
<td>2.157(4)</td>
<td>Co(3)-N(7)</td>
<td>2.165(5)</td>
</tr>
<tr>
<td>Co(3)-N(9)</td>
<td>2.177(5)</td>
<td>Co(3)-C(15)</td>
<td>2.3804(18)</td>
</tr>
<tr>
<td>Co(4)-N(12)</td>
<td>2.116(5)</td>
<td>Co(4)-O(6)</td>
<td>2.105(5)</td>
</tr>
<tr>
<td>Co(4)-O(2)</td>
<td>2.135(4)</td>
<td>Co(4)-N(10)</td>
<td>2.169(5)</td>
</tr>
<tr>
<td>Co(4)-N(11)</td>
<td>2.170(5)</td>
<td>Co(4)-Cl(6)</td>
<td>2.4030(17)</td>
</tr>
<tr>
<td>O(1)-Co(1)-N(3)</td>
<td>91.38(18)</td>
<td>O(1)-Co(1)-O(3)</td>
<td>88.66(17)</td>
</tr>
<tr>
<td>N(3)-Co(1)-O(3)</td>
<td>173.04(18)</td>
<td>O(1)-Co(1)-N(2)</td>
<td>165.3(2)</td>
</tr>
<tr>
<td>N(3)-Co(1)-N(2)</td>
<td>94.4(2)</td>
<td>O(3)-Co(1)-N(2)</td>
<td>83.94(19)</td>
</tr>
<tr>
<td>O(1)-Co(1)-N(1)</td>
<td>91.28(17)</td>
<td>N(3)-Co(1)-N(1)</td>
<td>78.62(19)</td>
</tr>
<tr>
<td>O(1)-Co(1)-N(1)</td>
<td>94.42(18)</td>
<td>N(2)-Co(1)-N(1)</td>
<td>76.7(2)</td>
</tr>
<tr>
<td>O(1)-Co(1)-Cl(3)</td>
<td>99.76(12)</td>
<td>N(3)-Co(1)-Cl(3)</td>
<td>95.63(14)</td>
</tr>
<tr>
<td>O(1)-Co(1)-Cl(3)</td>
<td>91.21(12)</td>
<td>N(2)-Co(1)-Cl(3)</td>
<td>93.11(15)</td>
</tr>
<tr>
<td>N(1)-Co(1)-Cl(3)</td>
<td>167.72(15)</td>
<td>N(6)-Co(2)-O(1)</td>
<td>89.92(18)</td>
</tr>
<tr>
<td>N(6)-Co(2)-N(4)</td>
<td>80.4(2)</td>
<td>O(1)-Co(2)-N(4)</td>
<td>89.88(17)</td>
</tr>
<tr>
<td>N(6)-Co(2)-N(5)</td>
<td>97.87(19)</td>
<td>O(1)-Co(2)-N(5)</td>
<td>161.83(19)</td>
</tr>
<tr>
<td>N(4)-Co(2)-N(5)</td>
<td>75.39(19)</td>
<td>N(6)-Co(2)-O(4)</td>
<td>173.3(2)</td>
</tr>
<tr>
<td>O(1)-Co(2)-O(4)</td>
<td>89.37(16)</td>
<td>N(4)-Co(2)-O(4)</td>
<td>92.94(19)</td>
</tr>
<tr>
<td>N(5)-Co(2)-O(4)</td>
<td>80.97(18)</td>
<td>N(6)-Co(2)-Cl(4)</td>
<td>96.74(16)</td>
</tr>
<tr>
<td>O(1)-Co(2)-Cl(4)</td>
<td>101.58(13)</td>
<td>N(4)-Co(2)-Cl(4)</td>
<td>168.22(14)</td>
</tr>
<tr>
<td>N(5)-Co(2)-Cl(4)</td>
<td>93.81(15)</td>
<td>O(4)-Co(2)-Cl(4)</td>
<td>89.94(15)</td>
</tr>
<tr>
<td>N(8)-Co(3)-O(2)</td>
<td>88.93(17)</td>
<td>N(8)-Co(3)-O(5)</td>
<td>169.2(2)</td>
</tr>
<tr>
<td>O(2)-Co(3)-O(5)</td>
<td>85.83(16)</td>
<td>N(8)-Co(3)-N(7)</td>
<td>80.2(2)</td>
</tr>
<tr>
<td>O(2)-Co(3)-N(7)</td>
<td>90.05(17)</td>
<td>O(5)-Co(3)-N(7)</td>
<td>90.36(19)</td>
</tr>
<tr>
<td>N(8)-Co(3)-N(9)</td>
<td>99.44(19)</td>
<td>O(2)-Co(3)-N(9)</td>
<td>162.15(18)</td>
</tr>
<tr>
<td>O(5)-Co(3)-N(9)</td>
<td>83.19(17)</td>
<td>N(7)-Co(3)-N(9)</td>
<td>76.02(19)</td>
</tr>
<tr>
<td>N(8)-Co(3)-Cl(5)</td>
<td>96.31(16)</td>
<td>O(2)-Co(3)-Cl(5)</td>
<td>103.31(12)</td>
</tr>
<tr>
<td>O(5)-Co(3)-Cl(5)</td>
<td>94.03(14)</td>
<td>N(7)-Co(3)-Cl(5)</td>
<td>166.19(15)</td>
</tr>
<tr>
<td>N(9)-Co(3)-Cl(5)</td>
<td>91.49(14)</td>
<td>N(12)-Co(4)-O(6)</td>
<td>171.17(19)</td>
</tr>
<tr>
<td>N(12)-Co(4)-O(2)</td>
<td>91.01(18)</td>
<td>O(6)-Co(4)-O(2)</td>
<td>85.73(17)</td>
</tr>
<tr>
<td>N(12)-Co(4)-N(10)</td>
<td>79.59(19)</td>
<td>O(6)-Co(4)-N(10)</td>
<td>92.26(19)</td>
</tr>
<tr>
<td>O(2)-Co(4)-N(10)</td>
<td>91.12(17)</td>
<td>N(12)-Co(4)-N(11)</td>
<td>99.4(2)</td>
</tr>
<tr>
<td>O(6)-Co(4)-N(11)</td>
<td>81.71(19)</td>
<td>O(2)-Co(4)-N(11)</td>
<td>161.58(18)</td>
</tr>
<tr>
<td>N(10)-Co(4)-N(11)</td>
<td>76.04(19)</td>
<td>N(12)-Co(4)-Cl(6)</td>
<td>94.13(14)</td>
</tr>
<tr>
<td>O(6)-Co(4)-Cl(6)</td>
<td>94.50(15)</td>
<td>O(2)-Co(4)-Cl(6)</td>
<td>99.59(11)</td>
</tr>
<tr>
<td>N(10)-Co(4)-Cl(6)</td>
<td>167.73(14)</td>
<td>N(11)-Co(4)-Cl(6)</td>
<td>94.80(15)</td>
</tr>
<tr>
<td>Co(3)-O(2)-Co(4)</td>
<td>133.65(19)</td>
<td>Co(1)-O(1)-Co(2)</td>
<td>134.2(2)</td>
</tr>
</tbody>
</table>
Table S2. Selected bond distances (Å) and angles (°) for 2.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(1)-N(3)</td>
<td>2.068(2)</td>
<td>Ni(1)-O(2)</td>
<td>2.0690(17)</td>
</tr>
<tr>
<td>Ni(1)-N(2)</td>
<td>2.0896(19)</td>
<td>Ni(1)-N(1)</td>
<td>2.107(2)</td>
</tr>
<tr>
<td>Ni(1)-O(1)</td>
<td>2.1217(16)</td>
<td>Ni(1)-Cl(1)</td>
<td>2.3759(7)</td>
</tr>
<tr>
<td>Ni(2)-N(6)</td>
<td>2.044(2)</td>
<td>Ni(2)-O(3)</td>
<td>2.098(2)</td>
</tr>
<tr>
<td>Ni(2)-N(4)</td>
<td>2.102(2)</td>
<td>Ni(2)-N(5)</td>
<td>2.111(2)</td>
</tr>
<tr>
<td>Ni(2)-O(1)</td>
<td>2.1487(16)</td>
<td>Ni(2)-Cl(2)</td>
<td>2.3614(7)</td>
</tr>
<tr>
<td>N(3)-Ni(1)-O(2)</td>
<td>169.90(8)</td>
<td>N(3)-Ni(1)-N(2)</td>
<td>97.14(8)</td>
</tr>
<tr>
<td>O(2)-Ni(1)-N(2)</td>
<td>86.26(7)</td>
<td>N(3)-Ni(1)-N(1)</td>
<td>81.14(8)</td>
</tr>
<tr>
<td>O(2)-Ni(1)-N(1)</td>
<td>90.28(7)</td>
<td>N(2)-Ni(1)-N(1)</td>
<td>78.33(8)</td>
</tr>
<tr>
<td>N(3)-Ni(1)-O(1)</td>
<td>91.69(7)</td>
<td>O(2)-Ni(1)-O(1)</td>
<td>83.37(6)</td>
</tr>
<tr>
<td>N(2)-Ni(1)-O(1)</td>
<td>166.37(8)</td>
<td>N(1)-Ni(1)-O(1)</td>
<td>92.87(7)</td>
</tr>
<tr>
<td>N(3)-Ni(1)-Cl(1)</td>
<td>94.35(6)</td>
<td>O(2)-Ni(1)-Cl(1)</td>
<td>94.91(5)</td>
</tr>
<tr>
<td>N(2)-Ni(1)-Cl(1)</td>
<td>93.81(6)</td>
<td>N(1)-Ni(1)-Cl(1)</td>
<td>170.29(6)</td>
</tr>
<tr>
<td>O(1)-Ni(1)-Cl(1)</td>
<td>95.86(5)</td>
<td>N(6)-Ni(2)-O(3)</td>
<td>169.69(8)</td>
</tr>
<tr>
<td>N(6)-Ni(2)-N(4)</td>
<td>82.55(9)</td>
<td>O(3)-Ni(2)-N(4)</td>
<td>89.19(8)</td>
</tr>
<tr>
<td>N(6)-Ni(2)-N(5)</td>
<td>99.25(8)</td>
<td>O(3)-Ni(2)-N(5)</td>
<td>85.00(8)</td>
</tr>
<tr>
<td>N(4)-Ni(2)-N(5)</td>
<td>78.14(8)</td>
<td>N(6)-Ni(2)-O(1)</td>
<td>88.46(7)</td>
</tr>
<tr>
<td>O(3)-Ni(2)-O(1)</td>
<td>85.48(7)</td>
<td>N(4)-Ni(2)-O(1)</td>
<td>90.85(7)</td>
</tr>
<tr>
<td>N(5)-Ni(2)-O(1)</td>
<td>165.53(9)</td>
<td>N(6)-Ni(2)-Cl(2)</td>
<td>95.28(6)</td>
</tr>
<tr>
<td>O(3)-Ni(2)-Cl(2)</td>
<td>93.91(5)</td>
<td>N(4)-Ni(2)-Cl(2)</td>
<td>169.72(6)</td>
</tr>
<tr>
<td>N(5)-Ni(2)-Cl(2)</td>
<td>92.35(6)</td>
<td>O(1)-Ni(2)-Cl(2)</td>
<td>99.15(5)</td>
</tr>
<tr>
<td>Ni(1)-O(1)-Ni(2)</td>
<td>136.63(7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S3. Selected bond distances (Å) and angles (°) for 3.

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(1)-N(3)</td>
<td>2.057(3)</td>
</tr>
<tr>
<td>Ni(1)-O(2)</td>
<td>2.092(2)</td>
</tr>
<tr>
<td>Ni(1)-N(1)</td>
<td>2.104(3)</td>
</tr>
<tr>
<td>Ni(1)-N(2)</td>
<td>2.110(3)</td>
</tr>
<tr>
<td>Ni(1)-O(1)</td>
<td>2.164(2)</td>
</tr>
<tr>
<td>Ni(1)-Cl(2)</td>
<td>2.3826(9)</td>
</tr>
<tr>
<td>Ni(2)-N(6)</td>
<td>2.042(3)</td>
</tr>
<tr>
<td>Ni(2)-N(4)</td>
<td>2.093(3)</td>
</tr>
<tr>
<td>Ni(2)-O(3)</td>
<td>2.101(3)</td>
</tr>
<tr>
<td>Ni(2)-N(5)</td>
<td>2.111(3)</td>
</tr>
<tr>
<td>Ni(2)-O(1)</td>
<td>2.174(2)</td>
</tr>
<tr>
<td>N(3)-Ni(1)-O(2)</td>
<td>168.17(10)</td>
</tr>
<tr>
<td>N(3)-Ni(1)-N(1)</td>
<td>82.47(10)</td>
</tr>
<tr>
<td>O(2)-Ni(1)-N(1)</td>
<td>89.88(10)</td>
</tr>
<tr>
<td>O(2)-Ni(1)-N(2)</td>
<td>88.71(10)</td>
</tr>
<tr>
<td>N(3)-Ni(1)-O(1)</td>
<td>86.19(9)</td>
</tr>
<tr>
<td>N(1)-Ni(1)-O(1)</td>
<td>91.71(9)</td>
</tr>
<tr>
<td>N(3)-Ni(1)-Cl(2)</td>
<td>96.83(8)</td>
</tr>
<tr>
<td>N(1)-Ni(1)-Cl(2)</td>
<td>170.22(7)</td>
</tr>
<tr>
<td>O(1)-Ni(1)-Cl(2)</td>
<td>97.98(6)</td>
</tr>
<tr>
<td>N(6)-Ni(2)-O(3)</td>
<td>174.77(12)</td>
</tr>
<tr>
<td>N(6)-Ni(2)-N(5)</td>
<td>95.79(10)</td>
</tr>
<tr>
<td>O(3)-Ni(2)-N(5)</td>
<td>86.75(11)</td>
</tr>
<tr>
<td>N(4)-Ni(2)-O(1)</td>
<td>91.39(9)</td>
</tr>
<tr>
<td>N(4)-Ni(2)-Cl(3)</td>
<td>171.53(8)</td>
</tr>
<tr>
<td>N(5)-Ni(2)-Cl(3)</td>
<td>93.75(9)</td>
</tr>
<tr>
<td>Ni(1)-O(1)-Ni(2)</td>
<td>132.64(11)</td>
</tr>
</tbody>
</table>

Table S4. Selected bond distances (Å) and angles (°) for 4.

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)-N(2)</td>
<td>1.9951(15)</td>
</tr>
<tr>
<td>Cu(1)-N(3)</td>
<td>1.9978(15)</td>
</tr>
<tr>
<td>Cu(1)-N(1)</td>
<td>2.0728(14)</td>
</tr>
<tr>
<td>Cu(1)-O(1)</td>
<td>2.1915(11)</td>
</tr>
<tr>
<td>Cu(1)-Cl(2)</td>
<td>2.2704(5)</td>
</tr>
<tr>
<td>Cu(2)-N(6)</td>
<td>2.0001(15)</td>
</tr>
<tr>
<td>Cu(2)-Cl(3)</td>
<td>2.2089(11)</td>
</tr>
<tr>
<td>Cu(2)-N(5)</td>
<td>2.1572(15)</td>
</tr>
<tr>
<td>Cu(2)-N(4)</td>
<td>2.0749(14)</td>
</tr>
<tr>
<td>Cu(2)-O(1)</td>
<td>2.0000(15)</td>
</tr>
<tr>
<td>N(2)-Cu(1)-N(3)</td>
<td>159.24(6)</td>
</tr>
<tr>
<td>N(2)-Cu(1)-N(1)</td>
<td>82.47(6)</td>
</tr>
<tr>
<td>N(3)-Cu(1)-N(1)</td>
<td>101.59(5)</td>
</tr>
<tr>
<td>N(3)-Cu(1)-O(1)</td>
<td>95.61(5)</td>
</tr>
<tr>
<td>N(1)-Cu(1)-Cl(2)</td>
<td>171.26(4)</td>
</tr>
<tr>
<td>N(5)-Cu(2)-N(6)</td>
<td>160.55(6)</td>
</tr>
<tr>
<td>N(6)-Cu(2)-N(4)</td>
<td>82.55(6)</td>
</tr>
<tr>
<td>N(6)-Cu(2)-O(1)</td>
<td>93.93(5)</td>
</tr>
<tr>
<td>N(5)-Cu(2)-Cl(3)</td>
<td>97.81(5)</td>
</tr>
<tr>
<td>N(4)-Cu(2)-Cl(3)</td>
<td>171.91(4)</td>
</tr>
<tr>
<td>Cu(1)-O(1)-Cu(2)</td>
<td>140.74(6)</td>
</tr>
</tbody>
</table>
Table S5. Selected bond distances (Å) and angles (°) for 5.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)-O(1)</td>
<td>2.0518(11)</td>
<td></td>
</tr>
<tr>
<td>Zn(1)-N(2)</td>
<td>2.0913(14)</td>
<td></td>
</tr>
<tr>
<td>Zn(1)-Cl(2)</td>
<td>2.2995(4)</td>
<td></td>
</tr>
<tr>
<td>Zn(2)-N(6)</td>
<td>2.0821(14)</td>
<td></td>
</tr>
<tr>
<td>Zn(2)-N(4)</td>
<td>2.2730(14)</td>
<td></td>
</tr>
<tr>
<td>O(1)-Zn(1)-N(3)</td>
<td>103.21(5)</td>
<td></td>
</tr>
<tr>
<td>N(3)-Zn(1)-N(2)</td>
<td>149.92(6)</td>
<td></td>
</tr>
<tr>
<td>N(3)-Zn(1)-N(1)</td>
<td>78.82(5)</td>
<td></td>
</tr>
<tr>
<td>O(1)-Zn(1)-Cl(2)</td>
<td>102.62(3)</td>
<td></td>
</tr>
<tr>
<td>N(2)-Zn(1)-Cl(2)</td>
<td>97.36(4)</td>
<td></td>
</tr>
<tr>
<td>O(1)-Zn(2)-N(6)</td>
<td>106.62(5)</td>
<td></td>
</tr>
<tr>
<td>N(6)-Zn(2)-N(5)</td>
<td>144.94(6)</td>
<td></td>
</tr>
<tr>
<td>N(6)-Zn(2)-N(4)</td>
<td>77.85(5)</td>
<td></td>
</tr>
<tr>
<td>O(1)-Zn(2)-Cl(3)</td>
<td>103.86(3)</td>
<td></td>
</tr>
<tr>
<td>N(5)-Zn(2)-Cl(3)</td>
<td>97.63(4)</td>
<td></td>
</tr>
<tr>
<td>Zn(2)-O(1)-Zn(1)</td>
<td>135.18(6)</td>
<td></td>
</tr>
</tbody>
</table>