Supporting Information

Linear Trinuclear Cobalt(II) Single-Molecule Magnets

Yuan-Zhu Zhang, Andrew J Brown, Yin-Shan Meng, Hao-Ling Sun, Song Gao

a Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China. Fax: (+86)-10-62751708; Tel: (+86)-10-62756320; E-mail: yuanzhuzhang@gmail.com; gaosong@pku.edu.cn.
b Department of Chemistry, Texas A & M University, College Station, TX 77842-3012 (USA).
c Department of Chemistry, Beijing Normal University, Beijing 100875, P. R. China

Fig. S1 NMR spectra of HPymp in CDCl₃.
Fig. S2 Experimental and simulated powder x-ray diffraction patterns of 1.

The powder X-ray diffraction (PXRD) data of ground fine powder was collected on a Rigaku Multiplex powder X-ray diffractometer with Cu Kα radiation (40 kV, 40 mA) between 5.0 and 35° (2θ) at ambient temperature.(Fig. S1) The PXRD data at room temperature on the sample 1 well matched with the calculated one from single crystal data.
Fig. S3. Ball-and-stick view of X-ray structure of 2. All anions and hydrogen atoms are eliminated for clarity.

Fig. S4 Packing view of 1 showing a 3D structure, where the linear [CoI₃]²⁺ cations are well isolated by the large counter anions of [BPh₄]⁻.
Fig. S5. M vs. H plot at 1.8 K for 2. Inset: Reduced magnetization data in applied fields (30, 50 and 70 kOe) at temperatures between 1.8 and 3.0 K; the solid lines represent the best fitting via ANISOFIT2.0 with $D = -2.3$ cm-1, $E = 0.016$ cm-1, and $g = 2.05$ for a $S_T = 9/2$ spin model.

Fig. S6. Magnetic hysteresis loop at 1.9 K for 1. Solid line is guide for eyes.
Fig. S7 In-phase (χ_m') and out-of-phase (χ_m'') ac susceptibilities under zero applied dc field and an ac field of 3 Oe at different frequencies for 1.

Fig. S8 Variable-frequency out-of-phase (χ_m'') components of the ac magnetic susceptibility data for 1, collected at temperatures of 1.80 K with an ac filed of 3 Oe and 0-1500 Oe dc applied fields.
Fig. S9. (left) Cole-Cole diagrams of 1 at 1.80 K with applied dc fields of 0-1500 Oe and ac field of 3 Oe. The solid lines are least-square fittings of the data to a distribution of single relaxation processes with a generalized Debye model. (right) the plot of the pre-exponential time (τ) vs. applied dc fields.

Table S1. Fittings of Cole-Cole plots of the variable-frequency ac data, collected at 1.8 K under different dc fields (0-1500 Oe), based on a generalized Debye model.

<table>
<thead>
<tr>
<th>H / Oe</th>
<th>χ_s (cm3 mol$^{-1}$)</th>
<th>χ_t (cm3 mol$^{-1}$)</th>
<th>τ (S)</th>
<th>α</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>1.72426</td>
<td>8.34446</td>
<td>0.00118</td>
<td>0.14442</td>
<td>4.32×10^{-4}</td>
</tr>
<tr>
<td>600</td>
<td>0.49137</td>
<td>8.20729</td>
<td>0.00251</td>
<td>0.17532</td>
<td>2.72×10^{-4}</td>
</tr>
<tr>
<td>900</td>
<td>0.34342</td>
<td>7.63448</td>
<td>0.00271</td>
<td>0.17051</td>
<td>1.65×10^{-4}</td>
</tr>
<tr>
<td>1200</td>
<td>0.30042</td>
<td>6.86897</td>
<td>0.00187</td>
<td>0.17673</td>
<td>3.86×10^{-4}</td>
</tr>
<tr>
<td>1500</td>
<td>0.30021</td>
<td>6.08291</td>
<td>0.00130</td>
<td>0.19045</td>
<td>1.12×10^{-3}</td>
</tr>
</tbody>
</table>
Fig. S10 Cole-Cole diagrams of 1 at 1.80 to 2.60 K with an applied dc field of 500 Oe and ac field of 3 Oe. The solid lines are least-square fittings of the data to a distribution of single relaxation processes with a generalized Debye model.

<table>
<thead>
<tr>
<th>T / K</th>
<th>χ_s (cm3 mol$^{-1}$)</th>
<th>χ_i (cm3 mol$^{-1}$)</th>
<th>τ (S)</th>
<th>α</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td>0.60296</td>
<td>8.38488</td>
<td>0.00218</td>
<td>0.18453</td>
<td>3.43 x 10^{-4}</td>
</tr>
<tr>
<td>1.95</td>
<td>0.60761</td>
<td>7.70748</td>
<td>0.00127</td>
<td>0.14832</td>
<td>2.39 x 10^{-4}</td>
</tr>
<tr>
<td>2.10</td>
<td>0.59273</td>
<td>7.13226</td>
<td>0.00067</td>
<td>0.11995</td>
<td>1.19 x 10^{-4}</td>
</tr>
<tr>
<td>2.20</td>
<td>0.57666</td>
<td>6.89795</td>
<td>0.00049</td>
<td>0.11111</td>
<td>8.62 x 10^{-5}</td>
</tr>
<tr>
<td>2.30</td>
<td>0.56791</td>
<td>6.58369</td>
<td>0.00030</td>
<td>0.10246</td>
<td>4.79 x 10^{-5}</td>
</tr>
<tr>
<td>2.40</td>
<td>0.60278</td>
<td>6.31127</td>
<td>0.00019</td>
<td>0.09268</td>
<td>3.21 x 10^{-5}</td>
</tr>
<tr>
<td>2.50</td>
<td>0.63322</td>
<td>6.06312</td>
<td>0.00013</td>
<td>0.08485</td>
<td>1.93 x 10^{-5}</td>
</tr>
<tr>
<td>2.60</td>
<td>0.69169</td>
<td>5.83851</td>
<td>0.00009</td>
<td>0.07783</td>
<td>1.56 x 10^{-5}</td>
</tr>
</tbody>
</table>
Fig. S11 In-phase (χ'_m) and out-of-phase (χ''_m) ac susceptibilities in zero (left) and 1 kOe (right) applied dc field and an ac field of 3 Oe at different frequencies for 2.

Fig. S12 Estimations of the U_{eff} and τ_0 for both 1 and 2 by fitting the experimental data at 4111 Hz based on a relative expression: $\ln(\chi''/\chi') = \ln(\omega\tau_0) + \Delta E/K_B T$ gave: (left) for 1, U_{eff} (zero) = 11.7(2) K and τ_0(zero) = 1.7×10^{-7} S; (Right) for 2, U_{eff} (1kOe) = 11.4(1) K and τ_0(1kOe) = 8.5×10^{-8} S.