Supporting information

An Air-Cathode Microbial Desalination Cell

Maha Mehannaa, Tomonori Saitoab, Jingling Yangb, Michael Hicknerb, Xiaoxin Caoc, Xia Huangc, and Bruce. E. Logana*

aDepartment of Civil and Environmental Engineering, The Pennsylvania State University, University Park, P.A. 16802, USA
bDepartment of Materials Science and Engineering, The Pennsylvania State University, University Park, P.A. 16802, USA
cState Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Beijing, P.R., 100084, China

*Corresponding author: E-mail: blogan@psu.edu; Phone: (1) 814-863-7908

Fig. 1 Picture of the experimental device for measuring permeselectivity. Two 4 cm cubic reactor were separated by the membrane to investigate. The compartment to the left was
filled with a 0.5 M NaCl solution. The compartment to the right was filled with a 0.1 M NaCl solution.

Fig. 2 MDCs performance’s in first cycle after inoculation in the presence of the experimental membranes. The anolyte contains 2g/L acetate. The middle compartment contains 20g/L NaCl.

Fig. 3 Evolution of the conductivity and pH as a function of the chloride concentration.
Fig. 4 Concentrations of the different phosphate species as a function of pH calculated for an initial concentration of 0.05 M phosphate buffer.

Fig. 5 Evolution of the electromotive force with time.