Supporting Information

for

Light-Harvesting Multi-Walled Carbon Nanotubes and CdS Hybrids:
Application to Photocatalytic Hydrogen Production from Water

Young Kwang Kim¹ and Hyunwoong Park¹,²*

¹Department of Physics and ²School of Physics and Energy Science, Kyungpook National University, Daegu 702-701, Korea
Figure S1. Thermogravimetric analysis (TGA) of employed carbon nanotubes (c-CNT).
Figure S2. Spectral output of a 300-W halogen lamp employed in this study.
Figure S3. Scanning electron microscopic images of c-CNT (top), a-CNT (middle), and h-CNT (bottom).
Figure S4. FTIR spectra of c-CNT, a-CNT, and h-CNT.

Overall spectra are quite similar among the three samples. A number of absorption peaks are identically found between 800 and 1500 cm$^{-1}$, attributable to C-O-C (1140 cm$^{-1}$, symmetric stretching), C-O (1251 cm$^{-1}$, asymmetric stretching in ether bridged group), carboxyl-carbonate (1377 cm$^{-1}$)ref1, and typical C–C (and/or C–H) vibration modes while a peak at 1650 cm$^{-1}$ arises from C = C stretching (nonconjugated) vibration due to the internal defects.15 The intensive, broad bands at 2800 – 3000 cm$^{-1}$ seem to be originated from C – C stretching vibration modes. One difference of the treated samples from the c-CNT is a broad absorption band (O – H stretching mode) found at ca. 3400 cm$^{-1}$.

Figure S5. XPS spectra of C1s

Figure S6. Deconvoluted XPS spectrum of O1s for CdS/a-CNT/Pt.
Figure S7. XRD patterns of c-CNT, a-CNT, and h-CNT.
Figure S8. SEM-EDX analysis of CNT annealed at 700 °C for 10 min. Elemental analysis indicates that the CNT is composed of C (87%), O (10%), Al (1%) and Fe (1.58%).
Figure S9. SEM-EDX analysis of CNT annealed at 700 °C for 60 min. Elemental analysis indicates that the CNT is composed of C (3%), O (37%), Al (18%) and Fe (42%).