Electronic Supplementary Information

Micro-scale spherical carbon-coated Li$_4$Ti$_5$O$_{12}$ ultra high power anode material for lithium batteries

Hun-Gi Junga,b, Seung-Taek Myungc, Chong Seung Yoond, Seoung-Bum Sonc, Kyu Hwan Ohc, Khalil Aminef, and Bruno Scrosatia,g, Yang-Kook Suna,b

aDepartment of WCU Energy Engineering, bDepartment of Chemical Engineering, Hanyang University, Seoul 133-791, Republic of Korea
cDepartment of Chemical Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
dDepartment of Material Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
eDepartment of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
fElectrochemical Technology Program, Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (USA)
gDepartment of Chemistry, University of Rome “La Sapienza” Piazza Aldo Moro 5, 00185, Italy
Fig. S1. XRD pattern of as-prepared mesoporous TiO$_2$.

As-prepared mesoporous TiO$_2$ has a typical anatase type crystal structure. The broad diffraction peaks indicate the smaller crystallite size of the product as shown in Fig. 2a-4. The tetragonal structure belongs to $I4_1/amd$ space group, and the calculated lattice parameters by a least square method are $a = 3.780(9)$ Å and $c = 9.525(20)$ Å.
Fig. S2 SEM images of (a) 5 wt% pitch coated Li$_4$Ti$_5$O$_{12}$ and (b) 20 wt% pitch coated Li$_4$Ti$_5$O$_{12}$.
Fig. S3 TEM image and corresponding carbon elemental mapping image obtained by EELS from 20 wt% pitch coated Li$_4$Ti$_5$O$_{12}$ emphasizing the uniform carbon distribution in the particle interior.
Fig. S4 Nitrogen sorption isotherms diagram obtained for the C-free Li$_4$Ti$_5$O$_{12}$ powders.