Supporting Information for

Long-Term, High-Rate Lithium Storage Capabilities of TiO$_2$
Nanostructured Electrodes Using 3D Self-Supported Indium
Tin Oxide Conducting Nanowire Arrays

Kyung-Soo Park, a Jin-Gu Kang, a Young-Jin Choi, a Sungjun Lee, b Dong-Wan
Kim c, and Jae-Gwan Park a

aNano-Materials Center, Korea Institute of Science and Technology, Seoul 136-791, Korea

bDivision of Physical Metrology, Korea Research Institute of Standards and Science, Daejeon 305-600, Korea

cDepartment of Materials Science and Engineering, Ajou University, Suwon 443-749, Korea

[*] To whom correspondence should be addressed. E-mail: dwkim@ajou.ac.kr and jgpark@kist.re.kr
Figure S1. Typical TEM image of ITO/TiO$_2$ hybrid nanowires.
Figure S2. EDS elemental mapping results of an individual ITO/TiO$_2$ nanowire, marked by a red square region in the inset.
Figure S3. Wide and narrow scan XPS spectra for a bundle of the ITO/TiO$_2$ hybrid nanowires.
Figure S4. Typical cyclic voltammetry of the ITO/TiO$_2$ hybrid nanostructured electrode at a scanning rate of 0.2 mV s$^{-1}$.
Figure S5. Charging-discharging curves of an ITO/TiO$_2$ hybrid nanostructured electrode at different C rates.
Figure S6. Charging-discharging curves of an ITO/TiO$_2$ hybrid nanostructured electrode.
Figure S7. SEM image of a fully lithiated ITO/TiO$_2$ hybrid nanostructured electrode (taken after 400 cycles). The Inset shows the FE-SEM image of a fully lithiated individual nanowire.