Supplementary data

Enhancement of Photocurrent and Photocatalytic activity of ZnO
hybridized with Graphite-like C$_3$N$_4$

Yajun Wang, Rui Shi, Jie Lin, and Yongfa Zhu*

Department of Chemistry, Tsinghua University, Beijing, 100084, China

Corresponding author: E-mail: zhuyf@mail.tsinghua.edu.cn; Fax: +86-10-62787601; Tel: +86-10-62787601.

Figure S1 Changes in MB concentration and TOC under UV irradiation ($\lambda = 254$ nm) by the ZnO and C$_3$N$_4$/ZnO -3% photocatalyst.
Figure S2 XRD patterns of ZnO and C$_3$N$_4$/ZnO-2% before and after 48 h photocatalytic degradation.
Figure S3 The TEM images of ZnO and C₃N₄/ZnO -2%: (a) ZnO before reaction, (b) ZnO after 48 h reaction, (c) C₃N₄/ZnO-2% before reaction, (d) C₃N₄/ZnO-2% after 48 h reaction. (UV light $\lambda = 254$ nm, average light intensity=0.8 mW/cm²)
Figure S4 TG curves of C$_3$N$_4$, ZnO and C$_3$N$_4$/ZnO photocatalysts in the presence of air. Insert: the amount of C$_3$N$_4$ hybridized on the surface of ZnO.

Figure S5 Changes in MB concentration in ZnO and C$_3$N$_4$/ZnO-3% photocatalytic system in dark.