Supporting information

Solar hydrogen generation from seawater with a modified BiVO$_4$ photoanode

Wenjun Luo, Zaisan Yang, Zhaosheng Li*, Jiyuan Zhang, Jianguo Liu, Zongyan Zhao, Zhiqiang Wang, Shicheng Yan, Tao Yu and Zhigang Zou

Ecomaterials and Renewable Energy Research Center (ERERC), Nanjing National Laboratory of Microstructures, and College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, P. R. China.

Corresponding authors: zsli@nju.edu.cn (Zhaosheng Li) and zgzou@nju.edu.cn (Zhigang Zou) Fax:+86-25-8368-6632; Tel: +86-25-8368-6630

Figure S1: XRD patterns of BiVO$_4$ and Mo-doped BiVO$_4$, (*) BiVO$_4$, (□) FTO substrates
Figure S2: UV-vis absorption spectra of pure BiVO₄ and Mo-doped BiVO₄

Figure S3: Binding energy of RhO₂ loaded on the surface of Mo-doped BiVO₄
Figure S4: I-V curves of Mo-doped BiVO$_4$ in natural seawater and simulated seawater

500 W Xe lamp

Figure S5: Hydrogen gas bubbles from a Pt cathode when the Mo-doped BiVO$_4$ photoanode with RhO$_2$ modification is illuminated in seawater.
Figure S6: XRD patterns of the Mo-doped BiVO$_4$ with RhO$_2$ modification before and after illumination in natural seawater, potential 1V vs. Ag/AgCl