
Wenbo Hou¹, Prathamesh Pavaskar², Zuwei Liu³, Jesse Theiss², Mehmet Aykol², and Stephen B. Cronin¹,²,³

Departments of ¹Chemistry, ²Electrical Engineering, and ³Physics
University of Southern California, Los Angeles, CA 90089

Figure S1. Short-circuit photocurrents of DSSCs with bare TiO₂, Au nanoparticles embedded in TiO₂ without dye molecules, and 5 nm Au thin film without the second annealing deposited between the TiO₂ layer and the dye monolayer as working electrodes.
Figure S2. (a) Absorption spectra of bare TiO$_2$ and Au nanoparticles embedded in TiO$_2$ without dye molecules. (b) Photocurrent spectra of photovoltaic cells with bare TiO$_2$ and Au nanoparticles embedded in TiO$_2$ without dye molecules as working electrodes.
The power conversion efficiency η of the solar cells is determined by

$$\eta(\%) = \frac{V_{oc} I_{sc} FF}{P_{in} S} \times 100$$ \hspace{1cm} (1)$$

where V_{oc} is the open-circuit photovoltage, I_{sc} is the short-circuit photocurrent, and $P_{in}S$ is the incident laser power times the working electrode area (60 mW). The fill factor FF is given by

$$FF = \frac{V_m I_m}{V_{oc} I_{sc}}$$ \hspace{1cm} (2)$$

where V_m and I_m are the voltage and the current at the maximum output power point, respectively.
Table S1 Comparison of photovoltaic device performances of Au nanoparticle/dye/TiO₂ configuration #2 with and without the second annealing.

<table>
<thead>
<tr>
<th>Working Electrode</th>
<th>V_{oc} (V)</th>
<th>I_{sc} (mA)</th>
<th>FF(%)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without annealing</td>
<td>0.48</td>
<td>0.34</td>
<td>52</td>
<td>0.14</td>
</tr>
<tr>
<td>With annealing</td>
<td>0.73</td>
<td>0.86</td>
<td>58</td>
<td>0.60</td>
</tr>
</tbody>
</table>