Electronic Supplementary Information (ESI):

Graphene-Sponges as High-Performance Low-Cost Anodes for Microbial Fuel Cells

Xing Xie,a,b Guihua Yu,c Nian Liu,d Zhenan Bao,c Craig S. Criddlea* and Yi Cuib,e*

a Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, USA. E-mail: ccriddle@stanford.edu; Tel: +1-650-723-9032

b Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA. E-mail: yicui@stanford.edu; Fax: +1-650-725-4034; Tel: +1-650-723-4613

c Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.

d Department of Chemistry, Stanford University, Stanford, California 94305, USA.

e Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94305, USA.
Experimental Details:

Electrode fabrication. Graphene nanopowders (0.1% by weight, SkySpring Nanomaterials, Inc., USA) were dispersed in water with 1% sodium cholate (Sigma-Aldrich Co. LLC., USA) by sonicating for 2 hours. To prepare graphene-sponge (G-S) composite, artificial sponges made from polyurethane (McMaster-Carr, USA) were cut into desired shapes, dipped into graphene ink, then removed and dried at ~90 ºC. The dipping-and-drying process was repeated twice to increase graphene loading. The G-S-SS electrode was prepared by sandwiching two pieces of G-S composite (1 cm × 1 cm × 0.2 cm) with a stainless steel (SS) mesh (1 cm × 1 cm × 0.05 cm, 20-mesh) in between. A conductive carbon paste (Ted Pella, Inc., USA) was applied to provide the connection between the G-S composite and the SS current collector. The G-S electrode without SS current collector was 1 cm × 1 cm × 0.4 cm, having the same volume of G-S composite as the G-S-SS electrode does. A plain SS mesh functioned as a control sample. All the electrodes were connected to the external circuit through titanium (Ti) wires.

MFC construction and operation. A traditional H-shaped two-chamber MFC was built as described previously. Three different anodes were placed in the same anodic chamber. The cathode was carbon cloth (2 cm × 5 cm, Fuel Cell Earth LLC, USA) with a platinum (Pt) catalyst layer (0.5 mg cm⁻² 10wt. % Pt on XC-72). The MFC was inoculated with the anolyte of a previous MFC originally seeded with wastewater from the Palo Alto Regional Water Quality Control Plant. The anolyte started with glucose media (1.0 g L⁻¹). Additional glucose was added when the operating voltage dropped below 0.05 V. The voltage across a 475 Ω external resistor was recorded. All experiments were conducted at room temperature (~20 ºC).
Characterization. All the SEM images were taken by a field emission SEM (XL30 Sirion, FEI, USA). The bio-samples for SEM were pretreated by a fixing and critical point drying process. The electrochemical characterization was carried out using a potentiostat equipped with electrochemical impedance spectroscopy (EIS) board (VMP3, Bio-Logic SAS, France). For all electrochemical tests, a three-electrode system was applied: the working electrode was the target electrode (SS, G-S, or G-S-SS); the counter electrode was Pt; and the reference electrode was a double junction Ag\|AgCl\|KCl (3.5M) electrode. The electrolyte was the MFC anolyte as described previously. EIS was conducted at the OCV in the frequency range of 10^5-0.1 Hz with a 10 mV peak-to-peak sinusoidal potential perturbation. To determine the maximum current density, linear staircase voltammetries were applied by increase the anode potential from -0.5 to 0.2 V vs. RE by 25 mV each time and recording the current after 3 minutes for equilibrium. The power outputs were calculated from the loading and the recorded voltage. The current densities and power densities were normalized to the projected surface area (1 cm2) or the volume (0.4 cm3) of the electrodes.

Supplementary Figures:

Fig. S1 G-S composite before and after flushing with water (~100 mL per second) for 10 minutes.

![Fig. S1](image1)

Fig. S2 A G-S-SS composite electrode: two pieces of G-S composite (1 cm × 1 cm × 0.2 cm) with a stainless steel (SS) mesh (1 cm × 1 cm × 0.05 cm, 20-mesh) in between. A Ti wire is applied to circuit connection.

![Fig. S2](image2)
Fig. S3 Nyquist curves of the electrochemical impedance spectroscopy (EIS) tests for different electrodes after colonization.
Fig. S4 SEM images of the colonized G-S-SS anode.