Electronic Supplementary Information for

Boron–based electrolyte solutions with wide electrochemical windows for Rechargeable Magnesium Batteries

Yong-sheng Guo,a,b Fan Zhang,a Jun Yang,a,b Fei-fei Wang,a,b Yanna NuLi,a,b, Shin-ichi Hirano b

a School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China. Fax: (+86)-21-54747667; Tel: (+86)-21-54747667; E-mail: yangj723@sjtu.edu.cn, fan-zhang@sjtu.edu.cn.
b Hirano Institute for Materials Innovation, Shanghai Jiao Tong University, Shanghai 200240, China

Electronic Supplementary Material (ESI) for Energy & Environmental Science
This journal is © The Royal Society of Chemistry 2012
Fig. S1 Electrochemical performance in different boron based electrolytes
Fig. S2 1H-NMR spectra of Mes$_3$B in CDCl$_3$

Fig. S3 Aromatic region of the 13C-NMR spectra measured with boron based electrolyte solutions of the following solutions: (red) PhMgCl/THF, (green) Mes$_3$B/THF, (blue) Mes$_3$B-PhMgCl/THF, (black) Mes$_3$B-(PhMgCl)$_2$/THF.
Fig. S4 Raman spectra of (a) THF solvent, (b) 0.5 M PhMgCl in THF, (c) 0.5 M Mes$_3$B in THF, (d) 0.5 M Mes$_3$B-PhMgCl/THF, (e) 0.5 M Mes$_3$B-(PhMgCl)$_2$/THF.