Hollow Core-shell Nanorod Supercapacitor Electrodes: Gap Matters

Cao Guana,c, Xinhui Xiaa, Nan Menga, Zhiyuan Zengb, Xiehong Caob, Cesare Socia, Hua Zhangb, and Hong Jin Fan*a,c

aDivision of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore.
bSchool of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore.
cEnergy Research Institute @ NTU (ERIAN), 50 Nanyang Drive, 637553 Singapore.
* Corresponding author. Email: fanhj@ntu.edu.sg

Figure S1. (a) Large-scale SEM image of CoO nanowire on nickel foam. SEM image of CoO nanowire after ALD coating of (b) TiO\textsubscript{2} (165 cycles), (c) Al\textsubscript{2}O\textsubscript{3} (80 cycles) and TiO\textsubscript{2} (165 cycles). (d) SEM image of the structure after immersing in KOH.
Figure S2. (a) CV curves of CoO, CoO@TiO$_2$ and CoOOΘTiO$_2$. (b) Charge-discharge curves of CoO and CoOOΘTiO$_2$ at different current densities.
Figure S3. TEM images of CoO nanowire after ALD coating of the bilayer of Al₂O₃/TiO₂ with cycles of: (a) 80/55, (b) 50/110, (c) 20/110, (d) 0/110, (e) 0/165, and (f) 50/0. (g) Areal capacitance of the 9 structures with different cycles of ALD coating. 20 ALD cycles of Al₂O₃ (~3 nm thick) are used as the optimized gap thickness for supercapacitor characterization.
Figure S4. (a) Rate and (b) cycling behavior of the NiO and NiOθTiO$_2$ electrodes.