
Enrico Ronca,a,b Mariachiara Pastore,a Leonardo Belpassi,a Francesco Tarantelli,a,b Filippo De Angelis a

a Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123, Perugia, Italy

b Dipartimento di Chimica, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123, Perugia, Italy

E-mail: filippo@thch.unipg.it

Electronic Supplementary Information

Charge Displacement Curves

Fig. S1: Left: CD curve of the L0-TiO$_2$ system anchored in BB geometry as a function of different solvents. Right: comparison between the CD curves calculated by SVP and 6-31G* basis sets for the same system.
Fig. S2: CD curve of the rh-L0-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in BB geometry.

Fig. S3: CD curve of the NKX-2587-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in BB geometry.
Fig. S4: CD curve of the NKX-2697-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in BB geometry.

Fig. S5: CD curve of the L1-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in BB geometry.
Fig. S6: CD curve of the D5-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in BB geometry.

Fig. S7: CD curve of the BA-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in BB geometry.
Fig. S8: CD curve of the NH$_2$-BA-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in BB geometry.

Fig. S9: CD curve of the NO$_2$-BA-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in BB geometry.
Fig. S10: CD curve of the AA-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in BB geometry.

Fig S11: CD curve of the AAF$_3$-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in BB geometry.
Fig. S12: CD curve of the L0-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in M geometry.

Fig. S13: CD curve of the NKX-2587-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in M geometry.
Fig. S14: CD curve of the NKX-2697-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in M geometry.

Fig. S15: CD curve of the BA-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in M geometry.
Fig. S16: CD curve of the NH₂-BA-TiO₂ system. The sensitizer is anchored on TiO₂ in M geometry.

Fig. S17: CD curve of the NO₂-BA-TiO₂ system. The sensitizer is anchored on TiO₂ in M geometry.
Fig. S18: CD curve of the AA-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in M geometry.

Fig. S19: CD curve of the AAF$_3$-TiO$_2$ system. The sensitizer is anchored on TiO$_2$ in M geometry.
Fig. S20: CD curve of the FA-TiO\(_2\) system. The sensitizer is anchored on TiO\(_2\) in M geometry.

Fig. S21: Comparison between CD curves of the NKX-2587 dye anchored on a (TiO\(_2\))\(_{38}\) and (TiO\(_2\))\(_{82}\) clusters. The sensitizer is anchored on TiO\(_2\) in BB geometry.
Partial Density of States (PDOS)

Fig. S22: Plots of Density Of States (DOS) for the complex containing the L0 dye in the BB anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.

Fig. S23: Plots of Density Of States (DOS) for the complex containing the rh-L0 dye in the BB anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.
Fig. S24: Plots of Density Of States (DOS) for the complex containing the NKX-2587 dye in the BB anchoring geometry: (red) \((\text{TiO}_2)_{38}\) cluster DOS, (green) DOS of the \((\text{TiO}_2)_{38}\) cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) \((\text{TiO}_2)_{38}\) cluster contribution to the total DOS.

Fig. S25: Plots of Density Of States (DOS) for the complex containing the NKX-2697 dye in the BB anchoring geometry: (red) \((\text{TiO}_2)_{38}\) cluster DOS, (green) DOS of the \((\text{TiO}_2)_{38}\) cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) \((\text{TiO}_2)_{38}\) cluster contribution to the total DOS.
Fig. S26: Plots of Density Of States (DOS) for the complex containing the L1 dye in the BB anchoring geometry: (red) (TiO₂)₃₈ cluster DOS, (green) DOS of the (TiO₂)₃₈ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO₂)₃₈ cluster contribution to the total DOS.

Fig. S27: Plots of Density Of States (DOS) for the complex containing the D5 dye in the BB anchoring geometry: (red) (TiO₂)₃₈ cluster DOS, (green) DOS of the (TiO₂)₃₈ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO₂)₃₈ cluster contribution to the total DOS.
Fig. S28 : Plots of Density Of States (DOS) for the complex containing BA in the BB anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.

Fig. S29 : Plots of Density Of States (DOS) for the complex containing NH$_2$-BA in the BB anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.
Fig. S30: Plots of Density Of States (DOS) for the complex containing NO$_2$-BA in the BB anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.

Fig. S31: Plots of Density Of States (DOS) for the complex containing AA in the BB anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.
Fig. S32: Plots of Density Of States (DOS) for the complex containing AAF$_3$ in the BB anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.

Fig. S33: Plots of Density Of States (DOS) for the complex containing the L0 dye in the M anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.
Fig. S34: Plots of Density Of States (DOS) for the complex containing the NKX-2587 dye in the M anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.

Fig. S35: Plots of Density Of States (DOS) for the complex containing the NKX-2697 dye in the M anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.
Fig. S36: Plots of Density Of States (DOS) for the complex containing the BA dye in the M anchoring geometry: (red) (TiO₂)₃₈ cluster DOS, (green) DOS of the (TiO₂)₃₈ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO₂)₃₈ cluster contribution to the total DOS.

Fig. S37: Plots of Density Of States (DOS) for the complex containing the NH₂-BA dye in the M anchoring geometry: (red) (TiO₂)₃₈ cluster DOS, (green) DOS of the (TiO₂)₃₈ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO₂)₃₈ cluster contribution to the total DOS.
Fig. S38: Plots of Density Of States (DOS) for the complex containing the NO$_2$-BA dye in the M anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.

Fig. S39: Plots of Density Of States (DOS) for the complex containing the AA dye in the M anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.
Fig. S40: Plots of Density Of States (DOS) for the complex containing the AAF$_3$ dye in the M anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.

Fig. S41: Plots of Density Of States (DOS) for the complex containing the FA dye in the M anchoring geometry: (red) (TiO$_2$)$_{38}$ cluster DOS, (green) DOS of the (TiO$_2$)$_{38}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) (TiO$_2$)$_{38}$ cluster contribution to the total DOS.
Fig. S42: Plots of Density Of States (DOS) for the complex containing the NKX-2587 dye in the BB anchoring geometry: (red) $(\text{TiO}_2)_{82}$ cluster DOS, (green) DOS of the $(\text{TiO}_2)_{82}$ cluster in the presence of the point charges reproducing the dye electrostatic potential, (blue) $(\text{TiO}_2)_{82}$ cluster contribution to the total DOS.

Table S1. Comparison between the amount of CT calculated from the CD curves and from the partial dye charges for the interacting dye/semiconductor assemblies.

<table>
<thead>
<tr>
<th>System</th>
<th>Charges CT</th>
<th>CD CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0-BB</td>
<td>0.43</td>
<td>0.36</td>
</tr>
<tr>
<td>NKX-2587-BB</td>
<td>0.39</td>
<td>0.40</td>
</tr>
<tr>
<td>NKX-2697-BB</td>
<td>0.34</td>
<td>0.36</td>
</tr>
<tr>
<td>L1-BB</td>
<td>0.40</td>
<td>0.36</td>
</tr>
<tr>
<td>AA-BB</td>
<td>0.48</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Additional fit

Fig. S43: Effect of charge donation/withdrawal on the energy position of the conduction band edge. When two electrons are added to TiO$_2$ we calculated the shifts relative to both singlet and triplet electronic states, finding almost coincident values.