Electronic Supplementary Information:

Flexible graphene/polyaniline composite paper for high-performance supercapacitor

Huai-Ping Conga,b, Xiao-Chen Rena, Ping Wanga and Shu-Hong Yua,*

a Prof. Dr. S. H. Yu, Dr. Huai-Ping Cong, Mr. Xiao-Chen Ren, Ms. Ping Wang, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, the National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
E-mail: shyu@ustc.edu.cn, Fax: 0086 551 63603040

b School of Chemical Engineering, Hefei University of Technology, Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei, Anhui 230009, P. R. China

\textbf{Fig. S1} SEM images with different magnifications of the cross section of the graphene paper.
Fig. S2 XRD patterns of GO powder and graphene paper.

Fig. S3 (a) XPS spectrum of graphene paper. (b) Core-level C1s XPS spectrum of graphene paper. (c) XPS spectrum of graphene/PANI paper. (d) Core-level C1s XPS spectrum of graphene/PANI paper.
Fig. S4 SEM images of the surface of the graphene/PANI composite papers with different electropolymerization times. (a) 2 min; (b) 5 min; (c) 10 min; (d) 15 min.

Fig. S5 Recorded current response during the electropolymerization process.
Fig. S6 Galvanostatic charge-discharge curves at different current densities. (a) graphene paper; (b) PANI film on the Pt electrode.