Supporting Information

A Perfluorinated Covalent Triazine-based Framework for Highly Selective and Water-tolerant CO$_2$ Capture

Yunfeng Zhao,†,‡,§ Ke Xin Yao,†§ Baiyang Teng,‖ Tong Zhang,‖ and Yu Han*,†

† School of Energy, Soochow University, Suzhou, Jiangsu 215006, PR China, ‖ Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. E-mail: yu.han@kaust.edu.sa

§ These authors contribute equally to this work.

Contents

Figure S1. X-ray diffraction patterns of various sorbents.

Figure S2. Pore size distribution curve of CTF-1-600 in the mesopore range.

Figure S3. C1s and N1s XPS spectra of (a) CTF-1, (b) CTF-1-600, and (c) FCTF-1-600.

Figure S4. N$_2$ adsorption isotherms at 298 K of various sorbents.

CO$_2$/N_2 selectivity calculation by the ideal adsorption solution theory (IAST)
Figure S1. X-ray diffraction patterns of various sorbents.

Figure S2. Pore size distribution curve of CTF-1-600 in the mesopore range.
Figure S3. C1s and N1s XPS spectra of (a) CTF-1, (b) CTF-1-600, and (c) FCTF-1-600.
Figure S4. N_2 adsorption isotherms at 298 K of various sorbents.
CO₂/N₂ selectivity calculation by the ideal adsorption solution theory (IAST)

The experimental adsorption isotherms were firstly fitted using the single-site Langmuir model:

\[q_i = q_{i,sat} \frac{b_i p_i}{1 + b_i p_i} \]

where

- \(b_i \) = Langmuir constant, Pa\(^{-1}\)
- \(p_i \) = bulk gas phase pressure of species i, Pa
- \(q_i \) = molar loading of species i, mmol g\(^{-1}\)
- \(q_{i,sat} \) = saturation capacity of species i, mmol g\(^{-1}\)

According to the ideal adsorption solution theory (IAST) proposed by Myers and Prausnitz,\(^1\) the adsorption selectivity, \(S_{ads} \), for binary mixtures of 1 and 2, is defined as

\[S_{ads} = \frac{q_1 / q_2}{p_1 / p_2} \]

In this study, selectivity calculations were carried out for CO₂/N₂ binary mixtures with N₂ molar fraction ranging from 70% to 100%, which is typical composition range of flue gases.