Electronic Supplemental Information (ESI)

Performance-improved Li-O₂ battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode

Fujun Li,ad Yong Chen,*ab Dai-Ming Tang,ε Zelang Jian,a Chang Liu,f Dmitri Golberg,e Atsuo Yamada,d and Haoshen Zhou*acd

Experimental

The MWCNTP is prepared according to References 29 and 30. Ru nanoparticles were prepared in an ethylene glycol solution containing RuCl₃, of which pH was adjusted to 11 using 0.1 M of NaOH in ethylene glycol, at 165 °C under flowing N₂ for 3 hrs.31,32 The MWCNTP without further treatment was pressed onto an Al mesh, and immersed into the neutralized solution containing Ru nanoparticles under continuous stirring overnight. The Ru@MWCNTP on Al mesh was taken out from the solution and washed with de-ionized water and ethanol, and dried in a vacuum oven at 105 °C for at least 12 hrs.

The MWCNTP and Ru@MWCNTP were used as cathodes in Li-O₂ batteries assembled in coin cells (CR2032) with 7 holes exposed to pure O₂ (purity of 99.9 %). An Al mesh with a diameter of 10 mm was employed as the current collector, a lithium foil of 10 mm in size was applied as an anode, a piece of glass fiber filter of 12 mm in size was used as a separator, and lithium
bis(trifluoromethanesulfonyl)amide (LiTFSA, Wako) and triglyme (G3, Wako) with a molar ratio of 1:5 was employed as the electrolyte. The amount of electrolyte used in each cell is 50 μL. All the procedures were conducted in an argon filled glove box with O₂ < 5 ppm and H₂O < 1 ppm. The assembled coin cells were stored in a closed glass container which was flushed with O₂ for 3 hrs before each test.

The Li-O₂ batteries were discharged and charged at a galvanostatic current density of 500 mA/g on a Hokuto discharging/charging system between 2.3 and 4.6 V (vs. Li⁺/Li). The specific capacity of Ru@MWCNT is based on the total mass of MWCNT and Ru nanoparticles. The cycling performance of Li-O₂ batteries was evaluated by continuous discharge and charge with a limiting capacity of 5000 mAh/g at 500 mA/g. All electrochemical measurements were carried out at room temperature. The discharged and charged MWCNT and Ru@MWCNT were disassembled from coin cells, washed with dried dimethoxyethane, and dried in a glove box. The electrodes, enclosed by transparent Kapton films to reduce their exposure to air, were then subjected to X-ray diffraction (XRD) on a Bruker D8 Advanced diffractometer with Cu Kα (λ = 1.5406 Å) radiation with a continuous 2θ scan between 30° and 80° at 0.02°/s. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) were obtained on S4800 (Hitachi) and JEOL2010 with an accelerating voltage of 200 kV.
Scheme S1 Flowchart of the preparation process of MWCNTPs.

(1) Carrier gas H_2, (2) flowmeter, (3) carbon source: benzene with $\sim 0.5\%$ of thiophene, (4) first tube furnace where ferrocene is vaporized, (5) tube furnace reactor where carbon nanotubes are synthesized, (6) gas outlet, (7) valves.

Fig. S1 Photograph of a free-standing MWCNTP.
Fig. S2 TEM image of Ru@MWCNTP.

Fig. S3 HRTEM image of Ru@MWCNTP (a) and FFT (b) of the selected area by the red square in (a).
Fig. S4 EDS of the Ru@MWCNTP.

Fig. S5 TGA curves of MWCNTP and Ru@MWCNTP.