ELECTRONIC SUPPLEMENTARY INFORMATION

Insights into the catalytic activity and surface modification of MoO₃ during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures

Teerawit Prasomsri, Manish Shetty, Karthick Murugappan and Yuriy Román-Leshkov*

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139 E-mail: yroman@mit.edu

Fig. S1 Comparison of the homolytic bond dissociation energies (BDEs) of monolignols calculated by using the B3LYP/6-311+G(d,p) level of theory at 593 K in gas phase.

Fig. S2 a) Long-run experiments on conversion of *m*-cresol over a period of 24 h, and b) the corresponding catalyst deactivation profiles. Reaction conditions: $P_{\text{Total}} = 1.013$ bar (0.015 bar P_{Feed} , balance H₂), W/F = 0.035 g_{Cat} (mmol_{Feed} h⁻¹)⁻¹, and no H₂ pre-reduction.

Fig. S3 TGA-MS traces for the evolution of H_2O (m/z = 18) from the spent MoO₃ catalysts. The spent MoO₃ samples derived from the experiments shown in Fig. 2 were passivated using 1 vol% O_2/N_2 mixture at room temperature for 1 h prior to the analysis.

Fig. S4 Unsuccessful regeneration of the MoO₃ catalyst using conversion of *m*-cresol as a probe reaction. Reaction conditions: $P_{\text{Total}} = 1.013$ bar (0.015 bar P_{Feed} , balance H₂), W/F = 0.035 g_{Cat} (mmol_{Feed} h⁻¹)⁻¹, and no pre-reduction. Regeneration conditions: T = 623 K, $P_{\text{Total}} = 1.013$ bar (100% O₂ or air) for 3 h.

Fig. S5 XPS of the Mo (3d) energy region of the passivated MoO_2 samples. The numbers in parentheses are the corresponding oxidation state percentages of Mo^{6+} , Mo^{5+} and Mo^{4+} , respectively.

As a proof of concept, a real lignin-derived feed was subjected to HDO conditions using a modified micro-pyrolyser (Pyroprobe 5150, CDS Analytical) to simulate an *ex situ* catalytic pyrolysis scenario (see scheme S1). A pulse of lignin-derived compounds generated from the pyrolysis of kraft lignin (Sigma-Aldrich) was sent directly to a GC/MS for analysis or mixed with an H₂ stream and sent through a MoO₃ catalyst bed prior to analysis. As shown in Fig. S6, alkylphenolics obtained by fast pyrolysis of kraft lignin were readily converted into a mixture of alkylaromatic hydrocarbons using the MoO₃ catalyst. Although this setup does not allow calculating a mass balance, these qualitative results show that MoO3 is a promising HDO catalyst capable of upgrading real lignin feeds. Further investigations using lignocellulosic feeds and reducible metal oxides are currently underway.

Fig. S6. The GC chromatograms demonstrating the analysis of lignin-pyrolysis vapours before and after the catalytic upgrading using MoO₃ catalyst. Pyrolysis lignin was conducted in a Pyroprobe using the following procedures: pyrolysis temperature = 923 K, ramp rate = 10 K/s, pyrolysis duration = 30 s, and sample loading ~ 1 mg. Reaction conditions: T = 623 K, P_{H2} < 1 bar, MoO₃ loading = 20 mg. GC analysis method: start at 313 K, hold for

5 min, increased at 10 K/min to 533 K, and hold for 25 min, split ratio of 50:1, carrier gas 1 mL/min. Peak identification was achieved by means of the NIST08 mass spectrum library.