Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

N-doped TiO₂ Nanotubes Coated with Thin TaO_xN_y Layer for Photoelectrochemical Water Splitting: Dual Bulk and Surface Modification of Photoanode

Hyoung-il Kim, Damián Monllor-Satoca, Wooyul Kim and Wonyong Choi*

School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea

*Corresponding author e-mail: wchoi@postech.edu; fax: +82-54-279-8299

Figure S1. (a) Energy-Filtered TEM (EF-TEM) image and EELS elemental maps of (b) Ta + Ti, (c) Ta, and (d) Ti. The inset shows a magnified EF-TEM image.

Figure S2. (a) XRD patterns of Ta_2O_5 , TaON (nitridation at 850 °C from Ta_2O_5), TNT, *N*-TNT, and *N*-TNT-Ta(3). (b) SEM image and (c) XRD pattern of TNT-Ta(10). (d) FESEM images of *N*-TNT-Ta(EPD) (the left panel for Top view and the right panel for cross-sectional view). *T*, *TN*, *, and # in the XRD figure represent Ta_2O_5 , TaON, anatase TiO₂, and Ti foil diffraction peaks, respectively.

Figure S3. Voltammograms of TNT and *N*-TNT under (a) visible ($\lambda > 420$ nm) and (b) UV ($\lambda > 320$ nm) illumination. Black and blue dashed lines represent voltammograms of TNT and *N*-TNT in the dark, respectively. The area yellow green and sky blue represent the increase (visible) and decrease (UV) of photocurrent after nitridation process (N-doping) compare to TNT, respectively.

Figure S4. (a) Cyclic voltammetry of *N*-TNT-Ta(3) nitrided at 600°C in the dark, under visible $(\lambda > 420 \text{ nm})$ and UV ($\lambda > 320 \text{ nm}$) illumination. (b) XPS (Ta $2p_{3/2}$ and N *Is*) spectra of *N*-TNT-Ta(3) nitrided at 500 °C and 600 °C. Deconvoluted XPS (Ti $2p_{3/2}$) spectra of *N*-TNT-Ta(3) nitrided at (c) 500 °C and (d) 600 °C.

Figure S5. (a) Voltammograms of (A, B) $TaO_xN_y(3)$ on Ti foil and (C, D) *N*-TNT-Ta(3) under dark (dotted line) and UV illumination ($\lambda > 320$ nm, solid line). (b) XPS (Ta $2p_{3/2}$ and N *Is*) spectra of *N*-TNT-Ta(3) and $TaO_xN_y(3)$ film grown over Ti foil. (c) SEM image of $TaO_xN_y(3)$ on Ti foil. (d) TEM image of $TaO_xN_y(3)$ coated *N*-TNTs detached from the *N*-TNT-Ta(3) film. The insets in (c) and (d) represent their magnified images.

Figure S6. (a) XRD spectra of commercial Ta₂O₅ (Aldrich), amorphous Ta₂O₅ calcined at 450°C (blue line), and crystalline Ta₂O₅ calcined at 700 °C (red line) from TaCl₅. (b) XRD spectra of TNT and *N*-TNT-Ta(3), both calcined at 700 °C. Inset shows magnified XRD spectrum of *N*-TNT-Ta(3). The "Ta" label in the inset represents TaO_xN_y diffraction peak. (c) Voltammetry of *N*-TNT and *N*-TNT-Ta(3) electrodes were annealed at 700 °C in the dark and under visible light illumination ($\lambda > 420$ nm). (d) FESEM image of TNT annealed at 700 °C.

Figure S7. Voltammograms of (a) low temperature (450 °C) and (b) high temperature (700 °C) annealed TNT, *N*-TNT, TNT-Ta(3), and *N*-TNT-Ta(3) under UV ($\lambda > 320$ nm) illumination.

Figure S8. (a) Nyquist plot of TNT obtained at an applied potential of 0 V vs. Ag/AgCl and under UV light ($\lambda > 320$ nm) irradiation. Impedance data was fitted to a conventional Randles circuit (solid blue line). (b) Normalized open-circuit potential (OCP) decay curve of TNT after turning off the UV light ($\lambda > 320$ nm) irradiation.

Figure S9. Mott-Schottky plots of (a) TNT, (b) *N*-TNT, and (c) *N*-TNT-Ta(3) were measured at fixed frequencies of 1 and 2 kHz in the dark with a potential amplitude of 10 mV.

Sample	Peak position (eV)				Ta / Ti
	Ta <i>4f</i>	Ti 2p _{3/2}	O ls	N 1s	Ratio
TNT	-	458.7	530.0	-	-
<i>N</i> -TNT	-	458.7	530.0	396.7 (0.7%)	-
<i>N</i> -TNT-Ta (1)	25.9 (5.0%)	458.8	530.1	396.0 (0.6%)	0.22
N-TNT-Ta (2)	25.9 (9.2%)	458.7	530.1	396.3 (1.2%)	0.51
N-TNT-Ta (3)	25.8 (11.4%)	458.8	530.1	396.2 (1.5%)	0.77
<i>N</i> -TNT-Ta (4)	25.8 (14.3%)	458.8	530.2	396.3 (2.0%)	1.11

Table S1. XPS Peak Positions (compositions) and Ta/Ti Ratio in TNT, *N*-TNT, and *N*-TNT-Ta hybrids prepared at 450°C.

Table S2. Photocurrent (j_{ph}) generation and corresponding enhancement factors (EFs) obtained from voltammetry.

	450 °C		700 °C		
	visible	UV	visible	UV	
	$\mathrm{E}\mathrm{F}^{b}$	$\mathrm{E}\mathrm{F}^{b}$	$\mathrm{E}\mathrm{F}^{b}$	$\mathrm{E}\mathrm{F}^{b}$	
Sample	$(j_{\rm ph}/\mu{\rm A~cm^{-2}})^{a}$	$(j_{\rm ph}/{\rm mA~cm^{-2}})^{a}$	$(j_{\rm ph}/\mu{\rm A~cm^{-2}})^{a}$	$(j_{\rm ph}/{\rm mA~cm^{-2}})^{a}$	
TNT	-	1.2 (1.64)	-	1.6 (0.87)	
<i>N</i> -TNT	1 (90)	1 (1.39)	1 (41)	1 (0.53)	
<i>N</i> -TNT-Ta(3)	3.6 (325)	1.8 (2.45)	8.5 (350)	3.3 (1.75)	

 ${}^{a}j_{ph}$ was obtained at a bias of +0.9 V (vs. Ag/AgCl) from Figs. 5a, S6c, and S7. b EF (enhancement factor) was obtained from j_{ph} with respect to the *N*-TNT.

Estimation of the Real Surface Area of Titanium Dioxide Nanotubes Photoanodes

In order to estimate the charge donor density (N_d , cm⁻³) of the electrode from Mott-Schottky (MS) plots, we need its real surface area (A_r). To estimate it, we shall consider that:

- 1. The nanotubes are arranged on the surface as a two-dimensional (2D) honeycomb-like hexagonal unit cell that infinitely repeats itself over the whole electrode geometric (projected) surface.
- 2. The real-to-geometric surface area ratio (A_r / A_g) can be estimated from the same area ratio corresponding to the unit cell.

The main geometric features of such 2D unit cell are the next:

where *l* is the side length of the unit cell, *r* is the pore radius and *L* is the pore depth. The geometric surface area (A_g) of this unit cell equals that of a hexagon:

$$A_g = \frac{3\sqrt{3}}{2}l^2$$

On the other hand, the real surface area (A_r) has the contribution from the hexagon and the lateral walls of the 7 pores (A_p) contained within the 2D unit cell:

$$A_r = A_g + 7A_p = \frac{3\sqrt{3}}{2}l^2 + 14\pi rL$$

Thus, the real-to-geometric surface area ratio (i.e. roughness factor) will be given by:

$$\frac{A_r}{A_g} = 1 + \frac{7A_p}{A_g} = 1 + \frac{28\pi\sqrt{3}}{9} \left(\frac{rL}{l^2}\right)$$

From SEM images, the parameters r, L and l can be estimated. Taking r = 37.5 nm, L = 4500 nm and l = 250 nm, the roughness factor will be:

$$\frac{A_r}{A_g} = 46.7$$

For the geometric area of 1 cm^2 , the real surface area will be 46.7 cm².