Electronic Supplementary Information

Sulfide bornite thermoelectric material: natural mineral with ultralow thermal conductivity

Pengfei Qiu, a Tiansong Zhang, a Yuting Qiu, a Xun Shi,* a,b and Lidong Chen* a,b

a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
b CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Physical parameters calculation details:

The average sound velocity is calculated by

\[v_{\text{avg}} = \frac{2\pi \Theta_D k_B}{h(6\pi^2 n)^{1/3}} \]

(1)

where \(\Theta_D \) is the Debye temperature, \(k_B \) is the Boltzmann constant, \(h \) is the Planck constant, and \(n \) is the number of atoms per unit volume.\(^1\) The Grüneisen parameter, which is a direct measure of the anharmonicity of the bonds in a solid,\(^2\) can be estimated through the relationship\(^3\)

\[\kappa_L = A \frac{M_{\text{avg}} \Theta_D^2 \delta}{\gamma^2 n^{2/3} T} \]

(2)

where \(\kappa_L \) is the lattice thermal conductivity, \(M_{\text{avg}} \) is the average mass of the atoms in the crystal, \(\delta \)\(^3\) is the volume per atom, \(n \) is the number of atoms in the primitive unit cell (\(n = 10 \) for Cu₅FeS₄), and \(A \) is a collection of physical constants (\(A = 3.1 \times 10^{-6} \) if \(\kappa \) is in Wm⁻¹K⁻¹, \(M_{\text{avg}} \) in amu, and \(\delta \) in Angstroms).
Figure S1. DSC scan profile for bornite Cu$_5$FeS$_4$ between 300 and 700 K. The two exothermic peaks at the temperature of 482 K and 543 K imply the existence of two phase transitions over the measured temperature range.

Figure S2. $ln(\sigma)$ as a function of $1/T$ for Bornite. The dashed lines represent the fitting curves using the empirical relation, $\sigma \sim \exp(-E_a/k_BT)$.
Figure S3. Temperature dependence of power factor ($PF = S^2\sigma$) for bornite samples.

Figure S4. Temperature dependence of lattice thermal conductivities of bornite and some state-of-the-art TE materials such as Bi$_2$Te$_3$, PbTe, and SiGe as well as the reported sulfides such as TiS$_2$, PbS, CuFeS$_2$, Cu$_{12}$Sb$_4$S$_{13}$, and α-Cu$_2$S.
Figure S5. XRD diffraction patterns of $0.5\text{Cu}_8\text{S}_4-0.5\text{Cu}_5\text{Fe}\square_2\text{S}_4$ solid solution collected at 300 K, 473 K, 573 K, and 673 K. At 300 K, the solid solution sample consists of two phases, orthorhombic Cu_5FeS_4 and tetragonal $\text{Cu}_{1.96}\text{S}$. These two phases gradually transfer to cubic phase when increasing temperature. The diffraction peaks at 673 K for $0.5\text{Cu}_8\text{S}_4-0.5\text{Cu}_5\text{Fe}\square_2\text{S}_4$ solid solution shift to the low angle as compared with those for high cubic phase of Cu_5FeS_4 (PDF-#24-0050) because the lattice parameter of Cu_2S (~5.707 Å) is larger than that of Cu_5FeS_4 (~5.5 Å).
Electronic Supplementary Information

Figure S6. Temperature dependence of power factor ($PF = S^2\sigma$) for mCu$_8$S$_4$-(1-m)Cu$_5$Fe□$_2$S$_4$ ($m = 0, 0.2, 0.5, 0.8$).

References

