Supplementary Data for

Sources and Distribution of Hexabromocyclododecanes (HBCDs)

in Japanese river Sediment

Satoshi Managaki¹, Iku Enomoto¹ and Shigeki Masunaga¹*

¹Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Yokohama, 240-8501, Japan

*To whom correspondence should be addressed.

E-mail: masunaga@ynu.ac.jp,

Tel: +81-45-339-4352

Fax: +81-45-339-4373

Tables

Table S1 Inflow, geographic parameters and chemical parameters

Table S2 Particulate size distribution in river sediments
Table S1 Inflow, geographic parameters and chemical parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>R. Tsurumi</th>
<th>R. Yodo</th>
<th>R. Kuzuryu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>person</td>
<td>1.8.E+06</td>
<td>1.1.E+07</td>
<td>6.6.E+05</td>
</tr>
<tr>
<td>Industrial Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>production quantity of dyeing and finishing processes of fabrics<sup>a</sup></td>
<td>m<sup>2</sup></td>
<td>n.a.</td>
<td>9.0.E+07</td>
<td>6.6.E+08</td>
</tr>
<tr>
<td>production quantity of polystyrene<sup>a</sup></td>
<td>ton</td>
<td>n.a.</td>
<td>1.3.E+04</td>
<td>n.a.</td>
</tr>
<tr>
<td>Regional properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total surface area<sup>b</sup></td>
<td>km<sup>2</sup></td>
<td>235</td>
<td>8240</td>
<td>2930</td>
</tr>
<tr>
<td>surface covered by water</td>
<td>%</td>
<td>1.4</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>average air height</td>
<td>km</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>average water depth<sup>c</sup></td>
<td>m</td>
<td>2.4</td>
<td>3.3</td>
<td>2.1</td>
</tr>
<tr>
<td>average sediment depth<sup>c</sup></td>
<td>cm</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>HBCD emission rate into water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>municipal wastewater</td>
<td>kg/year/person</td>
<td>1.8.E+07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>textile wastewater</td>
<td>kg/year/m<sup>2</sup>-fabric</td>
<td>3.0.E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflow into Water</td>
<td>kg/year</td>
<td>0.334</td>
<td>1.98</td>
<td>2000</td>
</tr>
<tr>
<td>Inflow into Air</td>
<td>kg/year</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Media composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>organic carbon in sediment<sup>c</sup></td>
<td>g/g</td>
<td>0.007</td>
<td>0.19</td>
<td>0.006</td>
</tr>
<tr>
<td>organic carbon of particles in water</td>
<td>g/g</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>organic carbon in soil solids</td>
<td>g/g</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>temperature conditions</td>
<td>°C</td>
<td>17.2</td>
<td>9.6</td>
<td>8.2</td>
</tr>
<tr>
<td>Intermedia transport velocities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aerosol dry deposition</td>
<td>m/h</td>
<td>10.8</td>
<td>10.8</td>
<td>10.8</td>
</tr>
<tr>
<td>sediment deposition</td>
<td>m/h</td>
<td>4.6E-08</td>
<td>4.6E-08</td>
<td>4.6E-08</td>
</tr>
<tr>
<td>sediment resuspension</td>
<td>m/h</td>
<td>1.1E-08</td>
<td>1.1E-08</td>
<td>1.1E-08</td>
</tr>
<tr>
<td>sediment burial</td>
<td>m/h</td>
<td>3.5E-08</td>
<td>3.5E-08</td>
<td>3.5E-08</td>
</tr>
<tr>
<td>rain rate</td>
<td>m/h</td>
<td>1.4E-04</td>
<td>1.4E-04</td>
<td>1.4E-04</td>
</tr>
<tr>
<td>HBCD<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>molar Mass</td>
<td>g/mol</td>
<td>641.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>measured log Kow</td>
<td></td>
<td>5.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henry’s law constant</td>
<td>atm m<sup>3</sup>/mol</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reaction Half-lives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>air</td>
<td>h</td>
<td>51.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>water</td>
<td>h</td>
<td>1440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>soil</td>
<td>h</td>
<td>1440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sediment</td>
<td>h</td>
<td>5760</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n.a.: not available
^a: The data of R. Yodo represents as the data of Osaka prefecture.
The data of R. Kuzuryu represents as the data of Fuku prefecture.
^b: Ministry of Land, Infrastructure, Transport and Tourism;
^c: average data measured at each of the studied Japanese rivers
<table>
<thead>
<tr>
<th>River</th>
<th>location</th>
<th>19-75 mm mm</th>
<th>4.75-19</th>
<th>2-4.75 mm</th>
<th>0.850-2 mm</th>
<th>0.250-0.850 mm</th>
<th>0.075-0.250 mm</th>
<th>0.005-0.075 mm</th>
<th><0.005 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Tsurumi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
<td>3.0</td>
<td>50.0</td>
<td>34.9</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.5</td>
<td>12.6</td>
<td>58.3</td>
<td>17.5</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>1.1</td>
<td>82.1</td>
<td>12.1</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
<td>18.7</td>
<td>76.5</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Yodo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>1.0</td>
<td>42.6</td>
<td>42.8</td>
<td>8.1</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Y2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>6.8</td>
<td>89.2</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>1.2</td>
<td>6.1</td>
<td>19.7</td>
<td>39.8</td>
<td>32.1</td>
<td></td>
</tr>
<tr>
<td>Y4</td>
<td>0.0</td>
<td>0.0</td>
<td>4.2</td>
<td>4.5</td>
<td>31.8</td>
<td>47.5</td>
<td>5.3</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>Y5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.2</td>
<td>19.8</td>
<td>23.7</td>
<td>29.0</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>Y6</td>
<td>0.0</td>
<td>0.0</td>
<td>3.3</td>
<td>24.2</td>
<td>68.1</td>
<td>4.1</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>R. Kuzuryu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.3</td>
<td>40.2</td>
<td>27.0</td>
<td>22.9</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>5.6</td>
<td>15.2</td>
<td>52.7</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>64.0</td>
<td>34.4</td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>K4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>5.6</td>
<td>64.2</td>
<td>24.9</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>K5</td>
<td>0.0</td>
<td>0.0</td>
<td>1.3</td>
<td>5.9</td>
<td>63.9</td>
<td>27.5</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>66.5</td>
<td>31.3</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>20.0</td>
<td>77.1</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>13.6</td>
<td>82.8</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>