1

11

19

Electronic Supplementary Information

The calculations used to estimate uptake and release rates were modified from Tyler and McGlathery ⁴⁸ and Naldi and Wheeler ⁷. Briefly, the total amount of nitrogen (mg) in the thallus at time t (N_t) is equal to the initial amount (N_i) plus new N taken up from the environment (N_u) minus N released (N_r):

$$6 \qquad N_t = N_i + N_u - N_r \tag{1}$$

7 Equation 1 is split into two separate equations for ^{15}N and ^{14}N :

$$8^{15}N_t = {}^{15}N_i + {}^{15}N_u - {}^{15}N_r$$
[2]

$$9^{-14}N_t = {}^{14}N_t + {}^{14}N_u - {}^{14}N_r$$
[3]

10 The initial amount of *N* in the thallus at each time step was calculated as:

$$N_i = M\left(\frac{\%N}{100}\right)$$
[4]

where *M* is the dry weight and *%N* is nitrogen content. The final amount of *N* in the thallus ateach time step was calculated as:

$$N_t = N_i + \Delta N$$
[5]

where ΔN is the amount of nitrogen taken up from the water based on DIN concentrations and water volume.

17 The total amount of ${}^{15}N$ and ${}^{14}N$ in the thallus was calculated for each day as:

15
$$N_t = N_t \left(\frac{\%^{15}N}{100}\right)$$
 [6]

$${}^{14}N_t = N_t \left(\frac{100 - \%^{15}N}{100}\right)$$
[7]

20 where $\%^{15}N$ is the ¹⁵N content. We assumed that the *N* released from the thallus at each time 21 step had a ratio of $^{15}N/^{14}N$ equivalent to the ratio found in the thallus in the previous time step 22 (*b*) ⁴⁸:

$$\frac{{}^{15}N_i}{{}^{14}N_i} = \frac{{}^{15}N_r}{{}^{14}N_r} = b$$
[8]

and that newly acquired N has the same ratio of ${}^{15}N/{}^{14}N$ as the stock solution used for daily spikes (*k*):

$$\frac{{}^{15}N_u}{{}^{14}N_u} = k$$
[9]

The latter assumption reflects the lack of isotopic fractionation reported for macroalgae ^{59, 72}. Substituting ${}^{15}N_r$ and ${}^{15}N_u$ from equations 8 and 9 into equation 2:

29
$${}^{15}N_t - {}^{15}N_i = {}^{14}N_u k - {}^{14}N_r b$$
 [10]

30 Rearranging and substituting ${}^{14}N_u$ from equation 3 into equation 10:

¹⁴
$$N_r = \frac{k ({}^{14}N_t - {}^{14}N_i) - {}^{15}N_t + {}^{15}N_i}{b - k}$$
 [11]

¹⁴ N_r is then used to solve for ${}^{15}N_r$ in equation 8, the sum of which equals N_r used to calculate release rates. ${}^{15}N_r$ is used in equation 2 to solve for ${}^{15}N_u$, which is inserted into equation 9 to solve for ${}^{14}N_u$, the sum of which is N_u , used to calculate gross uptake.

35

23

26