ELECTRONIC SUPPLEMENTARY INFORMATION FOR THE PAPER ENTITLED:

Fecal coliform population dynamics associated with the thermophilic stabilization of treated sewage sludge

Chris Ziemba and Jordan Peccia*

*Corresponding author, Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA; Phone: (203)432-4385, Fax: (203)432-4387, E-mail: jordan.peccia@yale.edu
Table S1. UniFrac P-values based on pairwise phylogenetic population difference comparisons. Values are corrected for the number of pairwise comparisons between each set of populations. P values > 0.1, indicate that no significant phylogenetic differences exist between the compared populations.

<table>
<thead>
<tr>
<th></th>
<th>50°C Pre</th>
<th>50°C Post</th>
<th>55°C Pre</th>
<th>55°C Post</th>
<th>60°C Pre</th>
<th>60°C Post</th>
<th>Pathogenic</th>
<th>Non-path.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50°C Pre</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>50°C Post</td>
<td></td>
<td></td>
<td>1</td>
<td>0.28</td>
<td>0.28</td>
<td>1</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>55°C Pre</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>55°C Post</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>60°C Pre</td>
<td></td>
<td></td>
<td></td>
<td>0.28</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60°C Post</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathogenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Non-path.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S1. Phylogenic tree of consensus sequences for *E. coli* isolates sampled pre and post thermophilic batch treatment at each temperature compared to consensus sequences for pathogenic and non-pathogenic *E. coli* strains. The scale of 0.05 corresponds to a distance representing 5 deviations in 100 base pairs. The tree is rooted with the Archaeabacteria *Methanobacterium congolense*.
Figure S2. Inactivation profiles at 50°C for pre-treatment *E. coli* isolates. Each isolate is tested in duplicate. Testing was conducted in PBS.
Figure S3. Inactivation profiles at 50°C for post-treatment *E. coli* isolates. Each isolate is tested in duplicate. Testing was conducted in PBS.
Figure S4. Inactivation profiles at 55°C for pre-treatment E. coli isolates. Each isolate is tested in duplicate. Testing was conducted in PBS.
Figure S5. Inactivation profiles at 55°C for post-treatment *E. coli* isolates. Each isolate is tested in duplicate. Testing was conducted in PBS.
Figure S6. Inactivation profiles at 60°C for pre-treatment and post-treatment *E. coli* isolates. Testing was conducted in PBS.
Figure S7. Inactivation profiles of *Bacillus* sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.
Cronobacter sp.

Figure S8. Inactivation profiles of *Cronobacter* sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.
Citrobacter sp.

50°C Replicate 1

\[
y = -2.629x - 0.1457
\]

50°C Replicate 2

\[
y = -2.6204x - 0.5583
\]

55°C Replicate 1

\[
y = -49.459x - 0.1039
\]

55°C Replicate 2

\[
y = -49.526x - 0.3923
\]

60°C

\[
y = -123.24x - 0.204
\]

Figure S9. Inactivation profiles of *Citrobacter* sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.
Figure S10. Inactivation profiles of *Enterobacter* sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.
Klebsiella sp.

![Graphs](https://via.placeholder.com/150)

Figure S11. Inactivation profiles of *Klebsiella* sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.
Figure S12. Inactivation profiles of Raoultella sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.