Supporting information for:

Lead isotopes in marine surface sediments reveal historical use of leaded fuel

Authors
Martin M. Larsen¹, Jerzy S. Blusztajn², Ole Andersen³, Ingela Dahllöf⁴

Affiliation
1) Aarhus University, department of Bioscience. Frederiksbergvej 399, DK-4000 Roskilde, Denmark (mml@dmu.dk)
2) Woods Hole Oceanographic Institution, 266 Woods Hole Rd. MS# 25 Woods Hole, Ma. 02543 (jblusztajn@whoi.edu)
3) Roskilde University, Department of Science, Systems and Models, Universitetsvej 1, 4000 Roskilde (oa@ruc.dk)
4) Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden (ingela.dahlof@gu.se)

Corresponding author
* mml@dmu.dk, +45 8715 5000, fax

Contents
This supporting information contains more information on Pb isotopes and examples for the use of the formulas for calculating the percentage of Pb from leaded gasoline.

1. Lead Isotopes
Pb has four stable isotopes ^{204}Pb (1.4%), ^{206}Pb (24%), ^{207}Pb (23%) and ^{208}Pb (52%). ^{204}Pb is the only non-radiogenic isotope, as the other isotopes are produced by the radioactive decay of ^{238}U to ^{206}Pb (decay half-time of parent isotope $t_{1/2} = 4.466 \times 10^9$ years), ^{235}U to ^{207}Pb ($t_{1/2} = 0.704 \times 10^8$ years), and ^{232}Th to ^{208}Pb ($t_{1/2} = 1.401 \times 10^{10}$ years). The difference in ratios between the radiogenic Pb isotopes from different locations is a function of the start composition and decays of the original ore U, Th and Pb content, hence the isotope ratios can be attributed to the geological formation time of Pb in the different mines.

![Figure SI-1: $^{208}\text{Pb}/^{206}\text{Pb}$ isotope ratio (red squares) vs. Th/Pb in this study and $^{206}\text{Pb}/^{207}\text{Pb}$ isotope ratio (blue diamonds) vs. U/Pb in Bollhöfer (2012).](image)

The linear regression between $^{208}\text{Pb}/^{206}\text{Pb}$ and Th/Pb (left) and $^{208}\text{Pb}/^{207}\text{Pb}$ and U/Pb (right) are indicated; whereas no correlation ($r^2 < 0.25$) was found for ^{208}Pb vs. U and ^{206}Pb vs. Th, respectively left and right.
For two samples we find a high Th to Pb ratio (Gh1 and Gr3, figure 1 left), and in both cases, the \(^{208}\text{Pb}/^{206}\text{Pb}\) isotope ratio is >2.4 (average of the remaining 21 samples is 2.09; ranging from 1.91 – 2.16). In a recent study,\(^1\) influence of radioactive U mining residues on \(^{206}\text{Pb}/^{207}\text{Pb}\) ratios showed that sediment ratio of U/Pb was correlated to the \(^{206}\text{Pb}/^{207}\text{Pb}\) ratio (figure 1 right), indicating a continuous generation of \(^{206}\text{Pb}\). The high Th/Pb ratios for Gh1, Gr3 is hypothesized to be the same situation, but with lower, perhaps natural sources of \(^{232}\text{Th}\) than in mining areas.

2. Example calculations for Australia
Using the gasoline ratios from table 2, and the background isotope ratio values from AU1 on isotope ratios of AU2 and AU3, all from table 3, the calculation of the numbers in table 4 is given below.

Extract of table 2

<table>
<thead>
<tr>
<th>Continent</th>
<th>Country</th>
<th>(^{208}/^{206}\text{Pb})</th>
<th>(^{206}/^{207}\text{Pb})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceania</td>
<td>Australia</td>
<td>2.202</td>
<td>1.060</td>
</tr>
</tbody>
</table>

Extract of table 3, gray columns calculated based on the \(^{204}\text{Pb}\)-ratios

<table>
<thead>
<tr>
<th>Station</th>
<th>ID</th>
<th>(^{206}/^{204}\text{Pb})</th>
<th>(^{207}/^{204}\text{Pb})</th>
<th>(^{208}/^{204}\text{Pb})</th>
<th>(^{208}/^{206}\text{Pb})</th>
<th>(^{206}/^{207}\text{Pb})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Conjola</td>
<td>Au1</td>
<td>18.294</td>
<td>15.615</td>
<td>38.472</td>
<td>2.103</td>
<td>1.172</td>
</tr>
<tr>
<td>Sydney</td>
<td>Au2</td>
<td>16.960</td>
<td>15.485</td>
<td>36.473</td>
<td>2.151</td>
<td>1.095</td>
</tr>
<tr>
<td>Sydney</td>
<td>Au3</td>
<td>17.086</td>
<td>15.497</td>
<td>36.908</td>
<td>2.160</td>
<td>1.103</td>
</tr>
</tbody>
</table>

Calculation based on \(^{206}\text{Pb}/^{207}\text{Pb}\) alone (equation 1)

\[
X_{\text{Au1/2}} = \frac{1.095_s - 1.172_b}{1.060_g - 1.172_b} \times 100\% = 68.9\%
\]

\[
X_{\text{Au3/3}} = \frac{1.103_s - 1.172_b}{1.060_g - 1.172_b} \times 100\% = 61.7\%
\]

Calculation based on Pythagoras and both \(^{206}\text{Pb}/^{207}\text{Pb}\) and \(^{208}\text{Pb}/^{207}\text{Pb}\) (equation 2):

\[
X_{\text{sample}} = \sqrt{\left(\frac{\left(2^{06} \text{Pb}/^{207} \text{Pb}\right)_s - \left(2^{06} \text{Pb}/^{207} \text{Pb}\right)_b}\right)^2 + \left(\frac{\left(2^{08} \text{Pb}/^{206} \text{Pb}\right)_s - \left(2^{08} \text{Pb}/^{206} \text{Pb}\right)_b}\right)^2} \times 100\%
\]
1. Reference