ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Photo-regenerable multi-walled carbon nanotube membranes for the removal of pharmaceutical micropollutants from water

Qammer Zaib†, Bilal Mansoor‡, and Farrukh Ahmad†*

†Water and Environmental Engineering Program, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi, UAE
‡Material Science and Engineering Program, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi, UAE

*Corresponding author phone: +971 2 810 9114; fax: +971 2 810 9901;
e-mail: fahmad@masdar.ac.ae (Farrukh Ahmad)

Submission to ES:P&I
Fig. S1. MWNTs-TiO$_2$ membranes with different loadings. The MWNTs vs. TiO$_2$ ratio was kept constant at 1:1. The membranes were prepared by depositing 1, 5, 10, 20, and 50 mg each of MWNTs TiO$_2$ on mixed cellulose acetate filter paper using vacuum filtration.

Fig. S2. The SEM micrographs of anatase TiO$_2$ spheres (a) before and (b) after in-house treatment. The surface area was increased upon treatment of TiO$_2$.
Fig. S3. Contact angle of deionized water with (a) MWNTs membrane and (b) MWNTs-TiO$_2$ membrane. The contact angle is $<90^\circ$, depicting that both surfaces are hydrophilic. However, MWNTs-TiO$_2$ appeared relatively more hydrophilic when compared to MWNTs membrane. The contact angle was measured by dropping ~3 μL deionized water on dry membrane surface at room temperature.
Fig. S4. Removal of (a) Acetaminophen, (b) Ibuprofen, and (c) Carbamazepine from water by MWNTs-only membrane (□), MWNTs-TiO₂ membrane (○) and MWNTs-TiO₂ membrane after photo-regeneration (△) under same conditions. The influent pharmaceutical’s concentration was 10 mg/L. Adsorption was performed at room temperature and concentrations of influents and effluents were determined using UV-Vis.
References