Supplementary materials

Magnetically recoverable fluorescence chemosensor for the adsorption and selective detection of Hg^{2+} in water

Qiang Lv, a Gang Li,* a Zhuhong Cheng, a Hong Lu b and Xiaoxia Gao c

Fig. S1 Au particles on the surface of the Fe_3O_4@SiO_2 were tuned by varying the amount of linker APTS.
Fig. S2 Response time of Fe₃O₄@SiO₂-Au-RhB-Tren@PSiO₂ with Hg²⁺ solution (1.25 × 10⁻⁵ M).

Fig. S3 Effect of pH on fluorescent intensity of Fe₃O₄@SiO₂-Au-RhB-Tren@PSiO₂ without or with Hg²⁺ (9×10⁻⁶ M).
Fig. S4 Fluorescence spectra of Fe₃O₄@SiO₂-Au-RhB-Tren@PSiO₂ in (a) rainwater and (b) drinking water consisting of HEPES buffer medium upon the increasing of Hg²⁺ concentrations (0 ~ 7.5 × 10⁻⁵ M).