SUPPLEMENTARY DATA

Photodegradation Routes of the Herbicide Bromoxynilin Solution and Sorbed on Silica Nanoparticles.

1.- Characterization of the nanoparticles:

1.1 Fourier transform infrared spectroscopy (FTIR)

Fourier transform infrared spectra in the range from 4000 to 400 cm\(^{-1}\) were recorded on a Bruker EQUINOX 55 apparatus with a resolution of 2 cm\(^{-1}\), using a KBr disk. To obtain a high signal-to-noise ratio 128 scans were accumulated for each sample.

The FTIR spectra of BXN and NP-BXN are compared in Table S1.

Table S1: Bands observed in FTIR spectra of BXN and NP-BXN.

<table>
<thead>
<tr>
<th></th>
<th>BXN</th>
<th>NP-BXN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2928.7</td>
<td>2928.8</td>
<td></td>
</tr>
<tr>
<td>2868.1</td>
<td>2860.1 / 2872.9</td>
<td></td>
</tr>
<tr>
<td>2229.7</td>
<td>2233.7</td>
<td></td>
</tr>
<tr>
<td>1465.2</td>
<td>1468.6</td>
<td></td>
</tr>
<tr>
<td>1548.5</td>
<td>1545.1</td>
<td></td>
</tr>
<tr>
<td>717.6</td>
<td>704.2</td>
<td></td>
</tr>
</tbody>
</table>
Figure S1: FTIR spectra of BXN (red) and NP-BXN (black).

1.2 Brunauer-Emmett-Teller (BET) analysis

The specific surface area (SSA) was determined via nitrogen (N\textsubscript{2}) adsorption isothems at 77 K in the reduced pressure range from 0.04 to 0.12 using the Brunauer-Emmett-Teller (BET) method \(^{(1)}\). For this purpose, a gas adsorption apparatus (Micromeritics ASAP 2020 V1.04 E) was employed.

1.3 Thermogravimetry (TG)

The thermogravimetric curve was performed with a Shimadzu TA-50 thermogravimeter analyzer, under He atmosphere with heating rate of 0.17 Ks\(^{-1}\). The instrument was calibrated with CaC\textsubscript{2}O\textsubscript{4}.3H\textsubscript{2}O.

1.4 UV-Visible Spectroscopy

The absorption spectra were taken with a computer-controlled Hewlett Packard 8453 spectrophotometer.
Figure S2: Absorption component of the UV-visible spectrum of NP-BXN.

1.5 Dynamic light scattering

The hydrodynamic diameter and size distribution of particles was measured by dynamic light scattering using a Malvern 4700 goniometer and 7132 correlator with an argon-ion laser operating at 488 nm. All measurements were made at a scattering angle of 90° at temperature of 25 °C. The measurements were analyzed by triplicate and the results were analyzed with Zetasizer software (provided by the manufacturer).

2.- Kinetics of Bromide Ion Formation

From Scheme 1:

\[-\frac{d[BXN]}{dt} = k_4 \times [BXN]\] \hspace{1cm} (S1)

\[\frac{d[DHBN]}{dt} = k_4 \times [BXN] - k_5 \times [DHBN]\] \hspace{1cm} (S2)

\[\frac{d[Br^-]}{dt} = k_4 \times [BXN] + k_5 \times [DHBN]\] \hspace{1cm} (S3)

Integration of eq. (S1) yields eq. (S4).

\[[BXN] = [BXN]_0 \times e^{-k_4 t}\] \hspace{1cm} (S4)

From eqs. (S2) and (S4), eq. (S5) is obtained.

\[-\frac{d[DHBN]}{dt} = k_4 \times [BXN]_0 \times e^{-k_4 t} - k_5 \times [DHBN]\] \hspace{1cm} (S5)

Integration of eq. (S5) leads to eq. (S6).

\[[DHBN] = \frac{k_4 \times [BXN]_0}{(k_5 - k_4)} \times (e^{-k_4 t} - e^{-k_5 t})\] \hspace{1cm} (S6)
From eqs. (S3), (S4), and (S6), we can write eq. (S7).

\[
\frac{d[Br^-]}{dt} = k_4 \times [BXN]_0 \times e^{-k_4 t} + \frac{k_4 \times k_5 \times [BXN]_0}{(k_5 - k_4)} \times \left(e^{-k_5 t} - e^{-k_4 t} \right)
\]

(S7)

Rearrangement and integration of eq. (S7) leads to eq. (S8).

\[
[Br^-] = \frac{(2k_5 - k_4) \times [BXN]_0}{(k_5 - k_4)} \times \left(1 - e^{-k_5 t} \right) - \frac{k_4 \times [BXN]_0}{(k_5 - k_4)} \times \left(1 - e^{-k_4 t} \right)
\]

(S8)

If k5 >> k4, eq. (S9) is obtained from eq. (S8).

\[
[Br^-] \approx 2 \times [BXN]_0 \times \left(1 - e^{-k_4 t} \right)
\]

(S9)

3.- Calculation of \(k_a \).

The photolysis rate of aqueous BXN can be expressed as:

\[
-\frac{d[BXN]}{dt} = k_a \Phi[BXN] \quad \text{eq. (S10)}
\]

Where \(\Phi \) is the photolysis quantum yield and \(k_a \) is the specific rate of light absorption.

The rate constant \(k_a \) was calculated from equation (S11) as recommended by Zepp (3).

\[
k_a = \frac{2.303}{6.02 \times 10^{20}} \times \sum \tilde{\varepsilon}_\lambda Z_\lambda \quad \text{eq. (S11)}
\]

Where \(\tilde{\varepsilon}_\lambda \) is the average absorption coefficient at a wavelength interval centered at \(\lambda \) and \(Z_\lambda \) is the underwater solar irradiance in this wavelength interval. Table S2 lists the values of \(\tilde{\varepsilon}_\lambda \) and \(Z_\lambda \) employed in the calculations.

From the data shown in Table S2 and eq. (S2) the calculated value of \(k_a \) is \(7.92 \times 10^{-3} \) s\(^{-1}\) and the photolysis rate \(k_a \times \Phi \) yields \(5.07 \times 10^{-4} \) s\(^{-1}\) for BXN and \(1.66 \times 10^{-5} \) s\(^{-1}\) for NP-BXN.
Table S2: The values of $\bar{\varepsilon}_\lambda$ from this work and Z_λ in water midday, midsummer, latitude 40°N from ref. (2).

<table>
<thead>
<tr>
<th>λ(nm)</th>
<th>$\bar{\varepsilon}_\lambda$(M$^{-1}cm^{-1}$)</th>
<th>Z_λ(photons/cm2s) ×10$^{-14}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>297.5</td>
<td>10709.8</td>
<td>7.1600×10$^{-3}$</td>
</tr>
<tr>
<td>300.0</td>
<td>9948.1</td>
<td>0.0240</td>
</tr>
<tr>
<td>302.5</td>
<td>9048.5</td>
<td>0.0723</td>
</tr>
<tr>
<td>305.0</td>
<td>8020.7</td>
<td>0.1810</td>
</tr>
<tr>
<td>307.5</td>
<td>6886.7</td>
<td>0.3050</td>
</tr>
<tr>
<td>310.0</td>
<td>5682.4</td>
<td>0.4950</td>
</tr>
<tr>
<td>312.5</td>
<td>4456.2</td>
<td>0.7170</td>
</tr>
<tr>
<td>315.0</td>
<td>3266.9</td>
<td>0.9330</td>
</tr>
<tr>
<td>317.5</td>
<td>2179.3</td>
<td>1.1500</td>
</tr>
<tr>
<td>320.0</td>
<td>1258.4</td>
<td>1.3500</td>
</tr>
<tr>
<td>323.0</td>
<td>455.8</td>
<td>2.5200</td>
</tr>
<tr>
<td>330.0</td>
<td>210.0</td>
<td>8.4600</td>
</tr>
</tbody>
</table>

References