Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information for:

Comparison of nickel speciation in workplace aerosol samples using sequential extraction analysis and x-ray absorption near-edge structure spectroscopy

Lisa L. Van Loon,^a Michael D. Dutton,^b and Cassidy Throssell^c

a Canadian Light Source Inc., Saskatoon, SK, Canada

b Vale Canada Limited, Mississauga, ON, Canada

c Vale Canada Limited, Copper Cliff, ON, Canada

Figure Mix-1. Nickel K-edge XANES spectrum of Mix 1 is shown as black dots. The LC fit is shown in red. The component spectra of $NiSO_4$ $^{\circ}6H_2O$, NiS, Ni^0 and NiO are shown in pink, purple, grey and green respectively. The orange bars indicate the LC fitting range.

Figure Mix-2. Nickel K-edge XANES spectrum of Mix 2 is shown as black dots. The LC fit is shown in red. The component spectra of $NiCO_3$, NiS, Ni^0 and NiO are shown in navy, purple, grey and green respectively. The orange bars indicate the LC fitting range.

Table ESI-1. Percent composition determined by LC fitting of the XANES spectra of two mixtures of reference compounds.

	NiCO ₃	NiSO ₄ ⁶ H ₂ O	NiO	Ni ⁰	NiS
Prepared (%)		27	20	32	21
XANES/		28	24	28	20
LC Fit (%)		20	24	20	20
Prepared (%)	36		21	23	20
XANES/	25		20	23	22
LC Fit (%)	- 55		20	23	

Figure S1. Nickel K-edge XANES spectrum of Sulphidic sample S1 is shown as black dots. The LC fit is shown in red. The component spectra of Ni_3S_2 and NiS are shown in blue and purple respectively. The orange bars indicate the LC fitting range.

Figure S2. Nickel K-edge XANES spectrum of Sulphidic sample S2 is shown as black dots. The LC fit is shown in red. The component spectra of Ni_3S_2 and NiS are shown in blue and purple respectively. The orange bars indicate the LC fitting range.

Figure S3. Nickel K-edge XANES spectrum of Sulphidic sample S3 is shown as black dots. The LC fit is shown in red. The component spectrum of Ni_3S_2 is shown in blue. The orange bars indicate the LC fitting range.

Figure S5. Nickel K-edge XANES spectrum of Sulphidic sample S5 is shown as black dots. The LC fit is shown in red. The component spectra of Ni_3S_2 and NiS are shown in blue and purple respectively. The orange bars indicate the LC fitting range.

Figure S6. Nickel K-edge XANES spectrum of Sulphidic sample S6 is shown as black dots. The LC fit is shown in red. The component spectrum of Ni_3S_2 is shown in blue. The orange bars indicate the LC fitting range.

Figure S7. Nickel K-edge XANES spectrum of Sulphidic sample S7 is shown as black dots. The LC fit is shown in red. The component spectrum of Ni_3S_2 is shown in blue. The orange bars indicate the LC fitting range.

Figure O2. Nickel K-edge XANES spectrum of Oxidic sample O2 is shown as black dots. The LC fit is shown in red. The component spectra of NiO and NiS are shown in green and purple respectively. The orange bars indicate the LC fitting range.

Figure O3. Nickel K-edge XANES spectrum of Oxidic sample O3 is shown as black dots. The LC fit is shown in red. The component spectra of NiO and NiS are shown in green and purple respectively. The orange bars indicate the LC fitting range.

Figure O4. Nickel K-edge XANES spectrum of Oxidic sample O4 is shown as black dots. The LC fit is shown in red. The component spectra of NiO and Ni_3S_2 are shown in green and blue respectively. The orange bars indicate the LC fitting range.

Figure O5. Nickel K-edge XANES spectrum of Oxidic sample O5 is shown as black dots. The LC fit is shown in red. The component spectra of Ni_3S_2 and NiO are shown in blue and green respectively. The orange bars indicate the LC fitting range.

Figure O6. Nickel K-edge XANES spectrum of Oxidic sample O6 is shown as black dots. The LC fit is shown in red. The component spectra of NiO and Ni_3S_2 are shown in green and blue respectively. The orange bars indicate the LC fitting range.

Figure O7. Nickel K-edge XANES spectrum of Oxidic sample O7 is shown as black dots. The LC fit is shown in red. The component spectra of NiO and Ni_3S_2 are shown in green and blue respectively. The orange bars indicate the LC fitting range.

Figure O8. Nickel K-edge XANES spectrum of Oxidic sample O8 is shown as black dots. The LC fit is shown in red. The component spectra of NiO and Ni_3S_2 are shown in green and blue respectively. The orange bars indicate the LC fitting range.

Figure OS2. Nickel K-edge XANES spectrum of Oxidic/Sulphidic sample OS2 is shown as black dots. The LC fit is shown in red. The component spectra of NiO and Ni_3S_2 are shown in green and blue respectively. The orange bars indicate the LC fitting range.

Figure OS3. Nickel K-edge XANES spectrum of Oxidic/Sulphidic sample OS3 is shown as black dots. The LC fit is shown in red. The component spectra of NiO and Ni_3S_2 are shown in green and blue respectively. The orange bars indicate the LC fitting range.

Figure OS4. Nickel K-edge XANES spectrum of Oxidic/Sulphidic sample OS4 is shown as black dots. The LC fit is shown in red. The component spectra of NiO, NiS and Ni⁰ are shown in green, purple and grey respectively. The orange bars indicate the LC fitting range.

Figure OS5. Nickel K-edge XANES spectrum of Oxidic/Sulphidic sample OS5 is shown as black dots. The LC fit is shown in red. The component spectra of NiO and Ni_3S_2 are shown in green and blue respectively. The orange bars indicate the LC fitting range.

Figure OS6. Nickel K-edge XANES spectrum of Oxidic/Sulphidic sample OS6 is shown as black dots. The LC fit is shown in red. The component spectra of NiO and NiS are shown in green and purple respectively. The orange bars indicate the LC fitting range.

Figure C2. Nickel K-edge XANES spectrum of Carbonate sample C2 is shown as black dots. The LC fit is shown in red. The component spectra of $NiCO_3$ and $NiSO_4 \cdot 6H_2O$ are shown in navy and pink respectively. The orange bars indicate the LC fitting range.

Figure C3. Nickel K-edge XANES spectrum of Carbonate sample C3 is shown as black dots. The LC fit is shown in red. The component spectra of $NiCO_3$ and $NiSO_4 \cdot 6H_2O$ are shown in navy and pink respectively. The orange bars indicate the LC fitting range.

Figure C4. Nickel K-edge XANES spectrum of Carbonate sample C4 is shown as black dots. The LC fit is shown in red. The component spectra of $NiCO_3$ and $NiSO_4 \cdot 6H_2O$ are shown in navy and pink respectively. The orange bars indicate the LC fitting range.

Figure C5. Nickel K-edge XANES spectrum of Carbonate sample C5 is shown as black dots. The LC fit is shown in red. The component spectra of $NiCO_3$ and NiO are shown in navy and green respectively. The orange bars indicate the LC fitting range.

Figure C6. Nickel K-edge XANES spectrum of Carbonate sample C6 is shown as black dots. The LC fit is shown in red. The component spectra of $NiCO_3$ and NiS are shown in navy and purple respectively. The orange bars indicate the LC fitting range.

Figure M3. Nickel K-edge XANES spectrum of Metallic sample M3 is shown as black dots. The LC fit is shown in red. The component spectra of Ni^0 and $NiSO_4 \cdot 6H_2O$ are shown in grey and pink respectively. The orange bars indicate the LC fitting range.

Figure M4. Nickel K-edge XANES spectrum of Metallic sample M4 is shown as black dots. The LC fit is shown in red. The component spectra of Ni^0 and $NiSO_4 \cdot 6H_2O$ are shown in grey and pink respectively. The orange bars indicate the LC fitting range.

Figure M5. Nickel K-edge XANES spectrum of Metallic sample M5 is shown as black dots. The LC fit is shown in red. The component spectrum of Ni⁰ is shown in grey. The orange bars indicate the LC fitting range.

Figure M6. Nickel K-edge XANES spectrum of Metallic sample M6 is shown as black dots. The LC fit is shown in red. The component spectrum of Ni⁰ is shown in grey. The orange bars indicate the LC fitting range.

Figure M7. Nickel K-edge XANES spectrum of Metallic sample M7 is shown as black dots. The LC fit is shown in red. The component spectrum of Ni⁰ is shown in grey. The orange bars indicate the LC fitting range.

Figure M8. Nickel K-edge XANES spectrum of Metallic sample M8 is shown as black dots. The LC fit is shown in red. The component spectra of Ni^0 and $NiSO_4 \cdot 6H_2O$ are shown in grey and pink respectively. The orange bars indicate the LC fitting range.

Figure M9. Nickel K-edge XANES spectrum of Metallic sample M9 is shown as black dots. The LC fit is shown in red. The component spectrum of Ni⁰ is shown in grey. The orange bars indicate the LC fitting range

Figure M10. Nickel K-edge XANES spectrum of Metallic sample M10 is shown as black dots. The LC fit is shown in red. The component spectra of Ni^0 and $NiSO_4 \cdot 6H_2O$ are shown in grey and pink respectively. The orange bars indicate the LC fitting range.

Figure M11. Nickel K-edge XANES spectrum of Metallic sample M11 is shown as black dots. The LC fit is shown in red. The component spectra of Ni^0 and $NiSO_4 \cdot 6H_2O$ are shown in grey and pink respectively. The orange bars indicate the LC fitting range.

Figure M12. Nickel K-edge XANES spectrum of Metallic sample M12 is shown as black dots. The LC fit is shown in red. The component spectra of $NiCO_3$ and Ni^0 are shown in navy and grey respectively. The orange bars indicate the LC fitting range.

Figure M13. Nickel K-edge XANES spectrum of Metallic sample M13 is shown as black dots. The LC fit is shown in red. The component spectra of Ni^0 and $NiCO_3$ are shown in grey and navy respectively. The orange bars indicate the LC fitting range.

Figure M14. Nickel K-edge XANES spectrum of Metallic sample M14 is shown as black dots. The LC fit is shown in red. The component spectra of Ni^0 and $NiCO_3$ are shown in grey and navy respectively. The orange bars indicate the LC fitting range.

Filter	Sampling Date	Plant	Building	Sampling Location			
S1	February-05-08	Smelter	Separation	Jumbo Cells			
S3 S4	February-26-08	Smelter Smelter	Separation	Jumbo Cells			
S5	February-05-08	Smelter	Separation	Ground Fir Ba			
S6	February-26-08	Smelter	Separation	Ball Mills 2a&2B			
S7 S8	February-11-08 February-27-08	Smelter Smelter	Casting Casting	#89 Control F #89 Control F			
S9	March-24-08	Smelter	Casting	#89 Control F			
S10	December-13-07	CCNR	NRC	Track Hopper			
S11	December-20-07	CCNR	NRC	Track Hopper			
S12	January-14-08	CCNR	NRC	Track Hopper			
S13	January-22-08	CCNR	NRC	Track Hopper			
O1	February-05-08	Smelter	Shipping	FEN Bulk Loa			
02	February-11-08	Smelter	Shipping	FEN Bulk Loa FEN Bulk			
O3	February-19-08	Smelter	Shipping	Loading			
04	November-15-07	CCNR	NRC	Clydach Landing			
O5	January-03-08	CCNR	NRC	Clydach Landing			
O6	January-08-07	CCNR	NRC	Clydach Landing			
07	January-14-08	CCNR	NRC	Clydach Landing			
O8	December-20-07	CCNR	NRC	Clydach Landing			
	November-15-07	CCNR	NRC	Behind			
OS1				Converters - '944			
-	January-03-07	CCNR	NRC	Behind Converters -			
OS2	Januarv-08-08	CCNR	NRC	'944 Behind			
OS3				Converters - '944			
	January-24-08	CCNR	NRC	Behind Converters -			
OS4				'944			
	January-22-08	CCNR	NRC	#17 Charging			
OS5	Januarv-24-08	CCNR	NRC	Conveyors #17			
OS6		20.11		Charging Conveyors			
067	Echnic di ci		EDD.	#2			
05/	repruary-11-08	Smelter	гвК	Gatefeeder #2			
OS8	February-26-08	Smelter	FBR	Gatefeeder #2			
OS9	February-27-08	Smelter	FBR	Gatefeeder			
	November-13-07	CCNR	IPC	#1 Local Powder			
M12	November-26-07	CCNR	IPC	Packaging #1 Local			
M1				Powder Packaging			
	November-28-07	CCNR	IPC	#1 Local Powder			
M2	November-28-07	CCNR	IPC	Packaging #7 Local			
M3				Powder Pack.			
	January-16-08	CCNR	IPC	#1 Local Powder			
M4				Packaging			
	November-13-07	CCNR	IPC	Battery Powder			
M5	November-26-07	CCNR	IPC	Packaging Battery			
M6				Powder Packaging			
	November-28-07	CCNR	IPC	Battery Powder			
M7	December-04-07	CCNR	IPC	Packaging Battery			
M8			IDC	Powder Packaging			
	January-16-08	CCNR	IPC	Battery Powder			
M9			12.6	Packaging			
	November-27-07	CCNR	IPC	Packaging & Shipping -			
M10	December-04-07	CCNR	IPC	OSP Packaging &			
M11				Shipping - OSP			
	May-05-08	PCR	Rounds	Automatic			
1/113	May-07-08	PCR	Rounds	Shearing Automatic			
M14	May-09-08	PCR	Rounds	Shearing Automatic			
M15	.,			Shearing			
M16	May-06-08	PCR	Rounds	Ten Kilo Bag Line			
M17	May-08-08	PCR	Rounds	ren Kilo Bag Line			
M18	May-09-08	PCR	Rounds	Ten Kilo Bag Line			
	May-05.00	DCP	Cobalt	Cred Truck			
C1	May-06-00	POR DOP		Unloading Cred Truck			
C2	May-00-00	PCP	Cobalt	Unloading Cred Truck			
C3	way-07-00	i UR	Jobali	Unloading			
C4	May-05-08	PCR	Cobalt	Cobalt Precip Area			
C5	May-06-08	PCR	Cobalt	Cobalt Precip Area			
C6	May-07-08	PCR	Cobalt	Cobalt Precip Area			

		Zatka	Sequent	lial Extr	action F	cesuits		
Soluble	Sulphidic rep	Metallic orted as mo	Oxidic /m3	Sum	Soluble Co	Sulphidic omponent P	Metallic ercentage (Oxidic %)
0.0076	0.0440 0.0581	0.0029 0.0063	0.0039	0.0584 0.0817	13.00 14.80	75.28 71.08	4.96 7.70	6.76 6.42
0.0267 0.0237	0.1250 0.1180	0.0026	0.0055	0.1597 0.1516	16.71 15.63	78.25 77.82	1.60 1.91	3.43 4.64
0.0073	0.0415	0.0010	0.0065	0.0563	12.94	73.66	1.79	11.61
0.0810	0.2990	0.0071	0.0106	0.3977	20.37	75.18	1.79	2.67
0.0052	0.0271	0.0012	0.0061	0.0396	13.17	68.50	2.98	15.34
0.0901	0.7960 0.2170	0.0127 0.0053	0.0220	0.9208	9.78 8.74	86.45 84.27	1.38 2.06	2.39 4.93
0.005	0.0209	0.0026	0.005	0.0335	14.93	62.39	7.76	14.93
0.0069	0.0261	0.0052	0.0408	0.0790	8.73	33.04	6.58	51.65
0.0072	0.0752	0.0102	0.0102	0.1028	7.00	73.15	9.92	9.92
0.0141	0.0569	0.0044	0.0064	0.0818	17.24	69.59	5.38	7.79
0.0014 0.0012	0.0052 0.0039	0.0005	0.0561 0.0757	0.0632 0.0814	2.21 1.54	8.29 4.84	0.79 0.59	88.71 93.03
0.0014	0.0045	0.0019	0.0966	0.1045	1.38	4.32	1.82	92.48
0.0044	0.0099	0.0023	0.0201	0.0367	11.99	26.98	6.27	54.77
0.0153	0.0277	0.0063	0.0367	0.0860	17.79	32.21	7.33	42.67
0.0021	0.005	0.0001	0.0107	0.0549	11.17	26.60	5.32	56.91
0.0000	0.0087	0.0031	0.0258	0.0420	0.49 22 EA	30.71	5.98 6 10	49.81
0.0090	0.0067	0.0026	0.0217	0.0420	22.04	20.42	0.10	50.94
0 0087	0 0002	0.0055	0.061	0.0844	10.31	10.00	6.52	70 97
0.0087	0.0092	0.0000	0.001	0.0044	10.31	10.90	0.02	12.21
0.0048	0.0068	0.0028	0.0395	0.0539	8.91	12.62	5.19	73.28
0 0031	0 0053	0.0051	0.0531	9 0 0 6 6 6	4 65	7 97	7 66	79 72
0.0001	3.0003	3.0001	3.0001	5.0000	UJ	1.51	1.00	
0.0026	0.0039	0.0011	0.0348	0.0424	6.13	9.26	2.59	82.02
0.0032	0.0052	0.0008	0.0220	0.0312	10.27	16.59	2.57	70.58
0.0042	0.0034	0.0007	0.0196	0.0279	15.06	12.12	2.51	70.30
0.0276	0.2090	0.0133	0.1730	0.4229	6.53	49.42	3.14	40.91
0.0522	0.3980	0.0079	0.4700	0.9281	5.62	42.88	0.86	50.64
0.0108	0.0585	0.0034	0.0789	0.1516	7.12	38.59	2.24	52.05
0.0011	0.0025	0.0035	0.0214	0.0285	3.86	8.77	12.28	75.09
0.0007	0.0009	0.0023	0.0113	0.0152	4.61	5.92	15.13	74.34
0.0017	0.001	0.0086	0.0379	0.0492	3.46	2.03	17.48	77.03
0.0031	0.004	0.0069	0.0265	0.0405	7.65	9.88	17.04	65.43
0.0008	0.0016	0.0025	0.0111	0.0160	4.99	10.11	15.61	69.29
0.001	0.0046	0.0000	0.0400	0.0500	1.00	2.40	10.50	04.04
0.001	0.0016	0.0068	0.0409	0.0503	1.99	3.18	13.52	81.31
0.0011	0.002	0.044	0.129	0.1761	0.62	1.14	24.99	73.25
0 0000	0.0000	0.0040	0.035	0.0445	1 03	2 17	11 57	84.94
0.0000	0.0009	0.0040	0.000	0.0415	1.93	2.17	11.07	04.34
0.0013	0.0008	0.0018	0.0115	0.0154	8.44	5.19	11.69	74.68
0.0008	0.002	0.0048	0.0531	0.0607	1.32	3.29	7.91	87.48
				2.0001				040
0.0016	0.0011	0.0056	0.0213	0.0296	5.41	3.72	18.92	71.96
0.0007	0.0014	0.0013	0.0148	0.0182	3.85	7.69	7.14	81.32
0.0024	0.0014	0.0010	0.0017	0.0065	36.92	21.54	15.38	26.15
0.0016	0.0012	0.0009	0.0019	0.0056	28.57	21.43	16.07	33.93
0.0014	0.0018	0.0014	0.0017	0.0063	22.22	28.57	22.22	26.98
0.0063	0.0016	0.0044	0.0075	0.0195	32.24	g 91	21.02	38.44
0.0003	0.0016	0.0041	0.0075	0.0195	32.31	7 40	21.03	30.40 21.77
0.0006	0.0011	0.0038	0.0032	0.0147	44.90	12.00	20.05	21.77
0.0041	0.0014	0.0030	0.0022	0.0107	30.32	13.08	∠0.04	20.56
0.0023	0.0013	0.0004	0.0009	0.0049	46.94	26.53	8.16	18.37
0.0019	0.0027	0.0009	0.0011	0.0066	28.79	40.91	13.64	16.67
0.0014	0.0020	0.0004	0.0010	0.0048	29.17	41.67	8.33	20.83
0.0012	0.0014	0.0000	0.0010	0.0040	20 57	33.33	14.20	22.04
0.0012	0.0014	0.0000	0.0010	0.0042	30 44	10.70	14.29	20.01
0.0028	0.0014	0.0010	0.0019	0.00/1	20.44	28.57	14.00	20.70
0.0010	0.0014	0.0009	0.0010	0.0049	20.41	20.07	10.37	52.00

Filter	Sampling Date	Plant	Building	Sampling Location	XANES Spectroscopy LCF										
					Ni3S2	Ni3S2 NIS NIO NI(0) NISO4.6H2Q NICO3 Soluble S						Sulphidic Metallic Oxidic Carbonate			
<u>S1</u>	February OF 00	Smoltor	Soparation	lumbo Colls	68 00	22 00	(70)				0	100			0
51	February-05-08	Smelter	Separation	Jumbo Cells	76.00	32.00					0	100	0	0	0
52 62	February 26.09	Smelter	Separation	Jumbo Cells	100.00	24.00					0	100	0	0	0
53 84	February-26-08	Smelter	Separation	Jumbo Cells	72.00	27.00					0	100	0	0	0
04 95	February-05-08	Smelter	Separation	Ground Fir Ball Mills 2a&2B	100.00	27.00					0	100	0	0	0
30 Se	February-19-08	Smelter	Separation	Ground Fill Ball Mills 2462B	100.00						0	100	0	0	0
30	February-26-08	Silleilei	Separation	Ground Fir Ball Millis 2a&2B	100.00						0	100	0	0	0
67	February 11.00	Cmoltor	Conting	#90 Control Donal	45.00	EE 00					0	400	0	0	0
57	February-11-08	Smelter	Casting	#69 Control Panel	45.00	55.00					0	100	0	0	0
50	February-27-06	Smelter	Casting	#69 Control Panel	100.00						0	100	0	0	0
29	March-24-08	Smeller	Casung	#69 Control Panel	100.00						0	100	0	0	0
S10	D	0010		The definition of the second	74.00		12.00	12.00			0	74	10	10	0
S10 S11	December-13-07			Track Hopper	74.00		13.00	18.00			0	74 54	10	10	0
S11	December-20-07		NRC		54.00		20.00	16.00			0	54	10	20	0
S12 S12	January-14-08				65.00		14.00	35.00			0	00	30	14	0
313	January-22-08	CONR	NRC	Ггаск Норрег	76.00		14.00	10.00			0	10	10	14	0
01	Eshaven OF 00	Cmoltor	Chipping	EEN Dulk Looding	16.00		84.00				0	16	0	04	0
01	February-05-08	Smelter	Shipping	FEIN BUIK Loading	16.00	16.00	84.00				0	10	0	04	0
02	February-11-08	Smelter	Shipping	FEN Bulk Loading		16.00	64.00 76.00				0	10	0	04	0
03	February-19-08	Smelter	Snipping	FEN BUIK Loading		24.00	76.00				0	24	0	76	0
04	No. 15.07	0010			20.00		80.00				0	20	0	00	0
04	November-15-07	CONR		Ciydach Landing	20.00		00.00				0	20	0	0U	0
05	January-03-08	CCNR	NRC	Clydach Landing	60.00		40.00				0	60	0	40	0
06	January-08-07	CCNR	NRC	Clydach Landing	40.00	L	60.00				0	40	0	60	0
07	January-14-08	CCNR	NRC	Clydach Landing	41.00	22.00	59.00	10.00			0	41	0	59	0
08	December-20-07	CCNR	NRC	Clydach Landing		32.00	52.00	16.00			0	32	16	52	0
001	No. 15.07	0010				20.00	70.00				0	20	0	70	
051	November-15-07	CCNR	NRC	Behind Converters - 944	00.00	30.00	70.00				0	30	0	/0	0
052	January-03-07	CCNR	NRC	Behind Converters - '944	39.00		61.00				0	39	0	61	0
083	January-08-08	CCNR	NRC	Behind Converters - '944	32.00		68.00				0	32	0	68	0
054	January-24-08	CCNR	NRC	Behind Converters - '944	21.00		79.00				0	21	0	79	0
005					00.00		77.00					00	0		
055	January-22-08	CCNR	NRC	#17 Charging Conveyors	23.00	00.00	77.00				0	23	0	11	0
056	January-24-08	CCNR	NRC	#17 Charging Conveyors		36.00	64.00				0		0	64	0
0.07	E 1 1 00	Omethan	500				05.00							0.5	
057	February-11-08	Smelter	FBR	#2 Gatefeeder	75.00	05.00	25.00				0	75	0	25	0
058	February-26-08	Smelter	FBR	#2 Gatefeeder	00.00	85.00	15.00				0	63	0	37	0
059	February-27-08	Smelter	FBR	#2 Gatefeeder	63.00		37.00				0	85	0	15	0
M40	No. 07	0010	100			00.00	70.00				0	00	0		
M12	November-13-07	CCNR	IPC	#1 Local Powder Packaging		30.00	70.00		4.00		0	30	0	70	0
M2	November-26-07	CCNR	IPC	#1 Local Powder Packaging				96.00	4.00		0	0	96	0	0
	November-28-07	CCNR	IPC	#1 Local Powder Packaging				96.00	4.00		0	0	96	0	0
M3	November-28-07	CCNR	IPC	#7 Local Powder Pack.				94.00	6.00		0	0	94	0	0
1014	January-16-08	CCNR	IPC	#1 Local Powder Packaging				95.00	5.00		0	0	95	0	0
ME	No. 10.07	0010	100	Deffect Decision				400.00			0	0		<u> </u>	
M5	November-13-07	CCNR	IPC	Battery Powder Packaging				100.00			0	0	100	0	0
M6	November-26-07	CCNR	IPC	Battery Powder Packaging		L		100.00			0	0	100	0	0
IVI7	November-28-07	CONR		Battery Powder Packaging	 		┞───┤	100.00	44.00		0	0	100	U	U
M8	December-04-07	CCNR	IPC	Battery Powder Packaging		L		89.00	11.00		0	0	89	0	0
1019	January-16-08	CCNR	IPC	Battery Powder Packaging		L		100.00			U	0	100	U	U
1440	N	0.01/15	100						7.00		0				
M10	November-27-07	CCNR	IPC	Packaging & Shipping -OSP				93.00	7.00		0	0	93	0	0
M111	December-04-07	CCNR	IPC	Packaging & Shipping -OSP				98.00	2.00		0	0	98	0	0
1440													-		
M13	May-05-08	PCR	Rounds	Automatic Shearing			3rd	2nd	1	st	0	0	Tertiatry	econdary	50
M14	May-07-08	PCR	Rounds	Automatic Shearing			3rd	2nd	1	st	0	0	Tertiatry	econdary	50
M15	May-09-08	PCR	Rounds	Automatic Shearing			3rd	2nd	1	st	0	0	Tertiatry	econdary	50
												-			
M16	May-06-08	PCR	Rounds	Ten Kilo Bag Line				53±5	47	'±5	0	0	53	0	47
M17	May-08-08	PCR	Rounds	Ten Kilo Bag Line				80.00	20	.00	0	0	80	0	20
M18	May-09-08	PCR	Rounds	Ten Kilo Bag Line				90.00	10	.00	0	0	90	0	10
C1	May-05-08	PCR	Cobalt	Cred Truck Unloading			30.00			70.00	0	0	0	30	70
C2	May-06-08	PCR	Cobalt	Cred Truck Unloading		20.00				80.00	0	20	0	0	80
C3	May-07-08	PCR	Cobalt	Cred Truck Unloading				47.00	25.00	29.00	25	0	47	0	29
C4	May-05-08	PCR	Cobalt	Cobalt Precip Area		24.00				76.00	0	24	0	0	76
C5	May-06-08	PCR	Cobalt	Cobalt Precip Area					47.00	53.00	47	0	0	0	53
C6	May-07-08	PCR	Cobalt	Cobalt Precip Area					41.00	59.00	41	0	0	0	59