The influence of carbon sources on the expression of the recA gene and genotoxicity detection by an Acinetobacter bioreporter

Bo Jiang a, b, Yizhi Song a, b, Dayi Zhang c,d, Wei E Huang e, Xu Zhang a, b, Guanghe Li a, b

a School of Environment, Tsinghua University, Beijing, 100084, PR China
b State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing, 100084, PR China
c Kroto Research Institute, University of Sheffield, Sheffield, S3 7HQ, UK
d Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom

Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2015
Slope: -3.374
PCR efficiency: 97.9%
R^2: 0.9953
Figure S1. Calibration curve using 16S rRNA (A) and recA (B) as template. Error bars were the standard derivations of all replicates. Slope: -3.3831, PCR efficiency: 97.5%, R^2: 0.9972.
Figure S2. SDS-PAGE gel image of proteins extracted after bioreporters exposed (3 h) to mitomycin C in different carbon sources. Samples from left to right were marker, LB, MMA, MMC, MMP and MMS, respectively.
Figure S3. The time curve of OD\textsubscript{600} values of the ADP1 genotoxicity bioreporter in the five carbon sources under different genotoxins treatments—(A) mitomycin C (0.6 μM), (B) MNNG (6.8 μM), and (C) 4-NQO (5.3 μM). Error bars were the standard derivations of all replicates.
Figure S4. The visualized bioluminescence taken by Versa Doc (Biorad) of induced (1 μM of mitomycin C) and negative control samples, in which the carbon source from left to right was LB, MMA, MMC, MMP and MMS.