Supporting Information

Selective Photocatalytic Oxidation of 4-Substituted Aromatic Alcohols in Water with Rutile TiO₂ Prepared at Room Temperature

Sedat Yurdakal, a,b Giovanni Palmisano, a Vittorio Loddo, a Oğuzhan Alagöz, c Vincenzo Augugliaro,* a Leonardo Palmisano* a

a “Schiavello-Grillone” Photocatalysis Group - Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy. augugliaro@dicpm.unipa.it; palmisano@dicpm.unipa.it.

b Kimya Bölümü, Fen Fakültesi, Anadolu Üniversitesi, Yunus Emre Kampüsü, 26470 Eskişehir, Turkey.

SEM Images

SEM images were recorded in order to measure the particles agglomerations. SEM images of home-made rutile photocatalysts prepared at room temperature are presented below along with the commercial sample (Sigma Aldrich, rutile) used for the sake of comparison.

SIGMA-ALDRICH
HP1/50

(d)

HP1/75

(e)
Figure S1. Selected SEM micrographs of rutile Sigma Aldrich sample (a) and home prepared (b-f) TiO$_2$ samples.

NMR Analysis

Figure S2 shows the NMR 1H and 13C spectrum of 4-metoxybenzyl aldehyde, MBAD, (the main partial oxidation product of 4-metoxybenzil alcohol). It can be noticed that no peaks coming from impurity are present thus indicating that the aldehyde is quite pure, more than 99%.
1H-NMR Spectrum of MBAD

(a)
Figure S2 1H (a) and 13C (b) NMR spectra of purified MBAD of a representative sample in the presence of the best selective rutile photocatalyst HP1/50.