Supporting Information

A reusable FeCl₃ · 6H₂O/cationic 2,2’-bipyridyl catalytic system for the coupling of aryl iodides with thiols in water under aerobic conditions

Wei-Yi Wu, Jui-Chan Wang and Fu-Yu Tsai*

Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan

Table of Contents

(1) Experimental Section...2
(2) Spectral data for 4a–4r...2
(3) References..7
(4) Copies of ¹H and ¹³C Spectra of compound 4d.............................8
Experimental Section

General

Chemicals were purchased from commercial supplier and were used without further purification. Cationic 2,2-bipyridyl ligand 1 was prepared according to the published procedure. For column chromatography, 70-230 mesh silica gel (Merck Ltd.) was employed. Melting points were recorded using melting point apparatus and were uncorrected. All \(^1\)H and \(^{13}\)C NMR spectra were recorded in CDCl\(_3\) at 25 °C on a Varian 200 NMR spectrometer. Chemical shifts were reported in ppm using tetramethylsilane (TMS) as internal standard.

General procedure for iron-catalyzed carbon-sulfur bond formation reaction

A 20 mL reactor equipped with a condenser was charged with FeCl\(_3\)·6H\(_2\)O (54 mg, 0.2 mmol), ligand 1 (92 mg, 0.2 mmol) and H\(_2\)O (5 mL). After the stirring of this solution at 50 °C for 0.5 h, aryl iodide 2 (3.0 mmol), thiol 3 (2.0 mmol), KOH (4.0 mmol) were added to the solution. The reaction mixture was then heated to reflux under air for 24 h. After cooling the reaction to room temperature the aqueous solution was extracted with hexane three times. The organic layer was dried over MgSO\(_4\) and the solvent was removed under vacuum. Column chromatography on silica gel afforded the desired product.

\[
\text{O}_2\text{N}
\]

4-Nitrophenyl phenyl sulfide (4a); Mp 54–55 °C (lit.\(^2\) 54–55 °C); \(^1\)H NMR (CDCl\(_3\), 200 MHz) \(\delta\) 8.07 (dt, \(J = 9.0\) Hz, 1.9 Hz, 2H), 7.57–7.52 (m, 2H), 7.47–7.44 (m, 3H), 7.18 (dt, \(J = 9.0\) Hz, 1.9 Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) \(\delta\) 148.4, 145.4, 134.7 (2C), 130.5, 130.0 (2C), 129.6, 126.7 (2C), 124.0 (2C).
4’-Nitrophenyl-4-tolyl sulfide (4b); Mp 78–79 °C (lit. 3 78–78.5 °C); \(^1\)H NMR (CDCl\(_3\), 200 MHz) \(\delta\) 8.04 (d, \(J = 8.7\) Hz, 2H), 7.44 (d, \(J = 8.3\) Hz, 2H), 7.26 (d, \(J = 8.3\) Hz, 2H), 7.14 (d, \(J = 8.7\) Hz, 2H), 2.42 (s, 3H); \(^13\)C NMR (CDCl\(_3\), 50 MHz) \(\delta\) 149.2, 145.2, 140.1, 135.0 (2C), 130.8 (2C), 126.6, 126.2 (2C), 123.9 (2C), 21.3.

4’-Chlorophenyl-4-nitrophenyl sulfide (4c); Mp 89–90 °C (lit. 4 88–88.5 °C); \(^1\)H NMR (CDCl\(_3\), 200 MHz) \(\delta\) 8.11–8.06 (m, 2H), 7.46–7.44 (m, 4H), 7.21–7.17 (m, 2H); \(^13\)C NMR (CDCl\(_3\), 50 MHz) \(\delta\) 147.5, 145.6, 136.0, 135.7 (2C), 130.2 (2C), 129.2, 126.9 (2C), 124.1 (2C).

2’-Naphthalyl-4-nitrophenyl sulfide (4d); Mp 108–110 °C; \(^1\)H NMR (CDCl\(_3\), 200 MHz) \(\delta\) 8.10–7.48 (m, 7H), 8.05 (d, \(J = 8.9\) Hz, 2H), 7.20 (d, \(J = 8.9\) Hz, 2H); \(^13\)C NMR (CDCl\(_3\), 50 MHz) \(\delta\) 148.2, 145.4, 134.5, 133.8, 133.3, 130.6, 129.8, 127.8 (2C), 127.6, 127.4, 127.0, 126.8 (2C), 124.0 (2C). HRMS Calcd for C\(_{16}\)H\(_{11}\)NO\(_2\)S: 281.0510. Found: 281.0512.

3-Nitrophenyl phenyl sulfide (4e); \(^1\)H NMR (CDCl\(_3\), 200 MHz) \(\delta\) 7.95–7.90 (m, 4H), 7.44–7.29 (m, 5H); \(^13\)C NMR (CDCl\(_3\), 50 MHz) \(\delta\) 134.2, 133.3, 132.1, 129.8, 129.6 (2C), 128.9, 128.7 (2C), 128.2, 123.1, 120.9.

4’-Methylphenyl-3-nitrophenyl sulfide (4f); Mp 60–61 °C (lit. 5 59–61 °C); \(^1\)H NMR (CDCl\(_3\), 200 MHz) \(\delta\) 7.96–7.95 (m, 2H), 7.45–7.36 (m, 4H), 7.22 (d, \(J = 7.8\) Hz, 2H), 2.38 (s, 3H); \(^13\)C NMR
(CDCl₃, 50 MHz) δ 148.6, 141.5, 139.4, 134.0 (2C), 133.3, 130.6 (2C), 129.4, 127.8, 122.2, 120.3, 21.2.

O₂N—S—S

4'-Chlorophenyl-3-nitrophenyl sulfide (4g); Mp 70–71 °C (lit.⁶ 70–72 °C); ¹H NMR (CDCl₃, 200 MHz) δ 8.06–8.04 (m, 2H), 7.53–7.29 (m, 6H); ¹³C NMR (CDCl₃, 50 MHz) δ 137.6, 134.5, 134.4 (2C), 130.0 (2C), 129.9, 129.8, 129.2, 128.9, 123.5, 121.3.

O₂N—S—S

2-(3-Mitrophenylsulfanyl)benzothiazole (4h)⁵; ¹H NMR (CDCl₃, 200 MHz) δ 8.58 (br, 1H), 8.30 (d, J = 7.8 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 164.6, 153.4, 148.7, 139.6, 135.8, 132.9, 130.4, 128.6, 126.5, 125.1, 124.5, 122.5, 120.0.

O₂N—S—S

4-Chlorophenyl phenyl sulfide (4i)⁷; ¹H NMR (CDCl₃, 200 MHz) δ 7.34–7.25 (m, 9H); ¹³C NMR (CDCl₃, 50 MHz) δ 135.1, 134.6, 132.9, 132.0 (2C), 131.3 (2C), 129.3 (2C), 129.1, 127.4 (2C).

O₂N—S—S

4'-Chlorophenyl-4-tolyl sulfide (4j); Mp 70–71 °C (lit.⁸ 71.4 °C); ¹H NMR (CDCl₃, 200 MHz) δ 7.31–7.18 (m, 4H), 7.17–7.13 (m, 4H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 50 MHz) δ 138.0, 135.9, 132.4 (2C), 132.3, 130.8 (2C), 130.7, 130.2 (2C), 129.1 (2C), 21.1.

O₂N—S—S

4'-Chlorophenyl-2-Naphthalyl sulfide (4k); Mp 108–110 °C (lit.⁹ 106–107 °C); ¹H NMR (CDCl₃,
Diphenyl sulfide (4l); 1H NMR (CDCl$_3$, 200 MHz) δ 7.36–7.22 (m, 10H); 13C NMR (CDCl$_3$, 100 MHz) δ 135.8 (2C), 131.0 (4C), 129.1 (4C), 126.9 (2C).

4-Tolyl phenyl sulfide (4m); 1H NMR (CDCl$_3$, 200 MHz) δ 7.27 (d, $J = 8.3$ Hz, 2H), 7.24–7.16 (m, 5H), 7.12 (d, $J = 8.3$ Hz, 2H), 2.33 (s, 3H); 13C NMR (CDCl$_3$, 100 MHz) δ 137.5, 137.0, 132.2 (2C), 131.4, 130.0 (2C), 129.8 (2C), 129.0 (2C), 126.4, 21.1.

2'-Naphthyl phenyl sulfide (4n); Mp 50–51 °C (lit. 50 °C); 1H NMR (CDCl$_3$, 200 MHz) δ 7.84–7.71 (m, 4H), 7.49–7.25 (m, 8H); 13C NMR (CDCl$_3$, 50 MHz) δ 135.8, 133.8, 133.0, 132.2, 130.9 (2C), 129.8, 129.2 (2C), 128.8, 128.7, 127.7, 127.4, 127.0, 126.5, 126.1.

2-Phenylsulfanyl-benzothiazole (4o); 1H NMR (CDCl$_3$, 200 MHz) δ 7.88 (d, $J = 8.2$ Hz, 1H), 7.74 (td, $J = 7.0$, 1.6 Hz, 2H), 7.64 (d, $J = 7.8$ Hz, 1H), 7.52–7.46 (m, 3H), 7.40 (dt, $J = 8.0$, 1.4 Hz, 1H), 7.25 (dt, $J = 8.0$, 1.4 Hz, 1H); 13C NMR (CDCl$_3$, 50 MHz) δ 153.8, 135.4, 135.2 (2C), 132.6, 130.3, 129.8 (2C), 126.0, 124.4, 124.2, 121.8, 120.7.

Di-p-tolylsulfide (4p); Mp 55–56 °C (lit. 56.1 °C); 1H NMR (CDCl$_3$, 200 MHz) δ 7.15 (d, $J = 7.3$ Hz, 2H), 7.06–6.86 (m, 10H), 2.39 (s, 6H).
Hz, 4H), 7.02 (d, J = 7.3 Hz, 4H), 2.24 (s, 6H); 13C NMR (CDCl$_3$, 50 MHz) δ 136.8 (2C), 132.6 (2C), 131.0 (4C), 129.8 (4C), 21.0 (2C).

![Chemical structure of 2'-Naphthyl-4-tolyl sulfide (4q)]

2'-Naphthyl-4-tolyl sulfide (4q); Mp 66–67 °C (lit. 9 66–67 °C); 1H NMR (CDCl$_3$, 200 MHz) δ 7.73–7.05 (m, 11H), 2.28 (s, 3H); 13C NMR (CDCl$_3$, 50 MHz) δ 134.3, 133.5, 132.5, 132.1, 130.0 (2C), 128.9 (2C), 128.4, 127.9, 127.7, 127.4, 126.7, 126.6, 126.2, 125.7, 21.1.

![Chemical structure of 4-(phenylthio)benzoic acid (4r)]

4-(phenylthio)benzoic acid (4r); Mp 173–174 °C (lit. 7 172–173 °C); 1H NMR (CDCl$_3$, 400 MHz) δ 7.93 (d, J = 8.4 Hz, 2H), 7.51–7.49 (m, 2H), 7.40–7.38 (m, 3H), 7.19 (d, J = 8.4 Hz, 2H); 13C NMR (CDCl$_3$, 100 MHz) δ 171.2, 145.8, 133.9, 131.7 (2C), 130.5 (2C), 129.6 (2C), 128.8 (2C), 127.0, 126.2.

![Chemical structure of Benzyl 4-nitrophenyl sulfide (4s)]

Benzyl 4-nitrophenyl sulfide (4s)11; 1H NMR (CDCl$_3$, 200 MHz) δ 8.10 (d, J = 9.2 Hz, 2H), 7.34 (d, J = 9.2 Hz, 2H), 7.37–7.30 (m, 5H), 4.25 (s, 2H); 13C NMR (CDCl$_3$, 50 MHz) δ 147.1, 145.3, 135.4, 128.8 (2C), 128.6 (2C), 127.7, 126.7 (2C), 123.8 (2C), 37.1.

![Chemical structure of Benzyl 4-chlorophenyl sulfide (4t)]

Benzyl 4-chlorophenyl sulfide (4t); Mp 50–51 °C (lit.12 47–49 °C); 1H NMR (CDCl$_3$, 200 MHz) δ 7.26–7.20 (m, 9H), 4.05 (s, 2H); 13C NMR (CDCl$_3$, 50 MHz) δ 137.1, 134.6, 132.4, 131.4 (2C), 128.9 (2C), 128.7 (2C), 128.4 (2C), 127.2, 39.4.
References

1H NMR spectrum of 2'-Naphthyl-4-nitrophenyl sulfide (4d)
13C NMR spectrum of 2'-Naphthalyl-4-nitrophenyl sulfide (4d)