Supporting Information

Ionic Liquids as Adjuvants for the Tailored Extraction of Biomolecules in Aqueous Biphasic Systems

Jorge F. B. Pereira,Álvaro S. Lima, Mara G. Freire* and João A. P. Coutinho

*CICECO, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes.

Av. Murilo Dantas, 300. CEP: 49032-490, Aracaju-Sergipe, Brasil

*Corresponding author

Tel: +351-234-401507; Fax: +351-234-370084; E-mail address: maragfreire@ua.pt
Table S1 Experimental binodal curve mass fraction data for the system PEG 600 (1) + \(\text{Na}_2\text{SO}_4 \) (2) + \(\text{H}_2\text{O} \) (3) + 5 wt % IL at 298 K

<table>
<thead>
<tr>
<th></th>
<th>no IL</th>
<th>no IL</th>
<th>[im]Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (w_1)</td>
<td>100 (w_2)</td>
<td>100 (w_1)</td>
<td>100 (w_2)</td>
</tr>
<tr>
<td>36.768 2.838 16.336 9.328 42.361 2.399</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.611 3.017 16.224 9.387 40.899 2.708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.726 3.227 16.050 9.515 39.463 3.088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.555 3.476 15.922 9.566 37.698 3.451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.351 3.833 15.812 9.603 36.027 3.758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.488 4.277 15.418 9.835 32.471 4.533</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.468 4.574 15.229 9.916 31.211 4.959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.949 4.624 15.053 10.017 29.544 5.563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.673 5.033 14.817 10.136 27.268 6.162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.655 5.666 14.007 10.710 22.156 7.997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.335 8.011 14.817 10.136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.745 8.307 14.544 10.272</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.577 8.379 14.396 10.367</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.308 8.466 14.007 10.710</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.180 8.522 13.829 10.660</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.954 8.703 13.703 10.762</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.764 8.692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.543 8.771</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.329 8.912</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.089 9.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.978 9.047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.670 9.203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.551 9.239</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S2 Experimental binodal curve mass fraction data for the system PEG 600 (1) + Na₂SO₄ (2) + H₂O (3) + 5 wt % IL at 298 K

<table>
<thead>
<tr>
<th></th>
<th>[C₁im]Cl</th>
<th>[C₁im]Cl</th>
<th>[C₂mim]Cl</th>
<th>[C₂mim]Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 w₁</td>
<td>100 w₂</td>
<td>100 w₁</td>
<td>100 w₂</td>
</tr>
<tr>
<td>46.741</td>
<td>1.239</td>
<td>7.880</td>
<td>14.181</td>
<td>47.655</td>
</tr>
<tr>
<td>44.375</td>
<td>1.727</td>
<td></td>
<td>15.434</td>
<td>1.355</td>
</tr>
<tr>
<td>41.770</td>
<td>2.263</td>
<td></td>
<td>43.329</td>
<td>1.843</td>
</tr>
<tr>
<td>39.577</td>
<td>2.635</td>
<td></td>
<td>40.476</td>
<td>2.544</td>
</tr>
<tr>
<td>38.416</td>
<td>2.924</td>
<td></td>
<td>36.071</td>
<td>3.112</td>
</tr>
<tr>
<td>36.566</td>
<td>3.320</td>
<td></td>
<td>35.304</td>
<td>3.451</td>
</tr>
<tr>
<td>34.897</td>
<td>3.613</td>
<td></td>
<td>33.379</td>
<td>3.705</td>
</tr>
<tr>
<td>33.952</td>
<td>3.843</td>
<td></td>
<td>32.073</td>
<td>4.122</td>
</tr>
<tr>
<td>32.918</td>
<td>4.135</td>
<td></td>
<td>31.085</td>
<td>4.361</td>
</tr>
<tr>
<td>32.254</td>
<td>4.254</td>
<td></td>
<td>29.565</td>
<td>4.732</td>
</tr>
<tr>
<td>31.290</td>
<td>4.490</td>
<td></td>
<td>28.138</td>
<td>5.244</td>
</tr>
<tr>
<td>30.231</td>
<td>4.770</td>
<td></td>
<td>27.340</td>
<td>5.429</td>
</tr>
<tr>
<td>29.459</td>
<td>4.957</td>
<td></td>
<td>26.125</td>
<td>5.839</td>
</tr>
<tr>
<td>28.571</td>
<td>5.215</td>
<td></td>
<td>24.436</td>
<td>6.529</td>
</tr>
<tr>
<td>27.613</td>
<td>5.502</td>
<td></td>
<td>23.310</td>
<td>6.971</td>
</tr>
<tr>
<td>26.554</td>
<td>5.945</td>
<td></td>
<td>22.062</td>
<td>7.484</td>
</tr>
<tr>
<td>25.895</td>
<td>6.128</td>
<td></td>
<td>20.583</td>
<td>8.117</td>
</tr>
<tr>
<td>23.152</td>
<td>7.162</td>
<td></td>
<td>17.628</td>
<td>9.448</td>
</tr>
<tr>
<td>22.396</td>
<td>7.435</td>
<td></td>
<td>16.620</td>
<td>9.926</td>
</tr>
<tr>
<td>21.774</td>
<td>7.667</td>
<td></td>
<td>15.427</td>
<td>10.508</td>
</tr>
<tr>
<td>20.865</td>
<td>8.049</td>
<td></td>
<td>14.355</td>
<td>11.031</td>
</tr>
<tr>
<td>19.378</td>
<td>8.638</td>
<td></td>
<td>12.767</td>
<td>11.862</td>
</tr>
<tr>
<td>18.518</td>
<td>9.023</td>
<td></td>
<td>12.184</td>
<td>12.149</td>
</tr>
<tr>
<td>16.757</td>
<td>9.832</td>
<td></td>
<td>10.128</td>
<td>13.246</td>
</tr>
<tr>
<td>15.972</td>
<td>10.198</td>
<td></td>
<td>8.477</td>
<td>14.188</td>
</tr>
<tr>
<td>15.364</td>
<td>10.488</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.760</td>
<td>10.759</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.154</td>
<td>11.052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.699</td>
<td>11.263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.074</td>
<td>11.569</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.685</td>
<td>11.752</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.136</td>
<td>12.023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.472</td>
<td>12.355</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.984</td>
<td>12.592</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.461</td>
<td>12.857</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.998</td>
<td>13.096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.691</td>
<td>13.255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.360</td>
<td>13.422</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.927</td>
<td>13.660</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.577</td>
<td>13.850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.199</td>
<td>14.060</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S3 Experimental binodal curve mass fraction data for the system PEG 600 (1) + \(\text{Na}_2\text{SO}_4 \) (2) + \(\text{H}_2\text{O} \) (3) + 5 wt % IL at 298 K

| \([\text{C}_4\text{mim}]\text{Cl}\) & \([\text{C}_4\text{mim}]\text{Cl}\) & \([\text{C}_4\text{C}_1\text{mim}]\text{Cl}\) |
|---|---|---|
| 100 \(w_1 \) | 100 \(w_2 \) | 100 \(w_1 \) | 100 \(w_2 \) | 100 \(w_1 \) | 100 \(w_2 \) |
| 44.357 & 1.586 & 13.027 & 10.516 & 37.776 & 2.016 |
| 41.813 & 1.867 & 12.631 & 10.730 & 36.797 & 2.346 |
| 37.828 & 2.476 & 11.851 & 11.178 & 33.993 & 2.817 |
| 34.825 & 2.811 & 11.123 & 11.602 & 31.450 & 3.426 |
| 27.886 & 4.559 & 22.108 & 6.544 |
| 27.160 & 4.689 & 21.146 & 7.025 |
| 25.874 & 5.135 & 18.958 & 8.073 |
| 25.387 & 5.292 & 17.991 & 8.584 |
| 24.957 & 5.407 & 17.113 & 9.068 |
| 24.323 & 5.578 & 15.728 & 9.866 |
| 23.821 & 5.780 |
| 23.361 & 5.952 |
| 22.824 & 6.107 |
| 22.462 & 6.209 |
| 21.956 & 6.394 |
| 21.398 & 6.621 |
| 20.582 & 6.912 |
| 20.092 & 7.127 |
| 19.526 & 7.387 |
| 19.145 & 7.487 |
| 18.659 & 7.702 |
| 18.196 & 7.910 |
| 17.751 & 8.114 |
| 17.421 & 8.269 |
| 17.086 & 8.425 |
| 16.738 & 8.578 |
| 16.276 & 8.808 |
| 15.829 & 9.027 |
| 15.311 & 9.304 |
| 14.993 & 9.460 |
| 14.497 & 9.719 |
Table S4 Experimental binodal curve mass fraction data for the system PEG 600 (1) + Na$_2$SO$_4$ (2) + H$_2$O (3) + 5 wt % IL at 298 K

<table>
<thead>
<tr>
<th>w$_1$</th>
<th>w$_2$</th>
<th>w$_1$</th>
<th>w$_2$</th>
<th>w$_1$</th>
<th>w$_2$</th>
<th>w$_1$</th>
<th>w$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>38.646</td>
<td>4.469</td>
<td>48.358</td>
<td>0.574</td>
<td>16.432</td>
<td>8.668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.860</td>
<td>5.157</td>
<td>46.218</td>
<td>0.969</td>
<td>15.867</td>
<td>8.948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.389</td>
<td>5.724</td>
<td>44.842</td>
<td>1.189</td>
<td>15.698</td>
<td>9.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.752</td>
<td>5.846</td>
<td>43.129</td>
<td>1.464</td>
<td>15.579</td>
<td>9.094</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.488</td>
<td>6.044</td>
<td>41.489</td>
<td>1.763</td>
<td>15.206</td>
<td>9.286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.932</td>
<td>6.751</td>
<td>38.332</td>
<td>2.216</td>
<td>14.333</td>
<td>9.750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.997</td>
<td>7.073</td>
<td>36.290</td>
<td>2.504</td>
<td>13.718</td>
<td>10.069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.281</td>
<td>7.287</td>
<td>35.441</td>
<td>2.639</td>
<td>13.396</td>
<td>10.245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.607</td>
<td>7.426</td>
<td>34.570</td>
<td>2.717</td>
<td>12.965</td>
<td>10.489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.908</td>
<td>7.600</td>
<td>33.932</td>
<td>2.839</td>
<td>12.552</td>
<td>10.728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.989</td>
<td>7.890</td>
<td>32.865</td>
<td>3.026</td>
<td>12.249</td>
<td>10.902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.399</td>
<td>8.080</td>
<td>32.307</td>
<td>3.139</td>
<td>12.053</td>
<td>11.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.467</td>
<td>10.740</td>
<td>27.306</td>
<td>4.474</td>
<td>9.239</td>
<td>12.759</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.910</td>
<td>12.286</td>
<td>24.638</td>
<td>5.326</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.357</td>
<td>12.549</td>
<td>24.069</td>
<td>5.535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.972</td>
<td>12.714</td>
<td>23.809</td>
<td>5.653</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.322</td>
<td>13.017</td>
<td>23.269</td>
<td>5.844</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.268</td>
<td>14.065</td>
<td>21.102</td>
<td>6.636</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.924</td>
<td>14.242</td>
<td>20.746</td>
<td>6.772</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.301</td>
<td>6.951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.945</td>
<td>7.084</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.441</td>
<td>7.308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.206</td>
<td>7.397</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.781</td>
<td>7.573</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.401</td>
<td>7.731</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.828</td>
<td>8.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.456</td>
<td>8.185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.937</td>
<td>8.420</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S5: Experimental binodal curve mass fraction data for the system PEG 600 (1) + Na₂SO₄ (2) + H₂O (3) + 5 wt % IL at 298 K.

<table>
<thead>
<tr>
<th></th>
<th>[amim]Cl</th>
<th>[C₄mim][MeSO₄]</th>
<th>[C₄mim][MeSO₄]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 w₁</td>
<td>100 w₂</td>
<td>100 w₁</td>
<td>100 w₂</td>
</tr>
<tr>
<td>36.511</td>
<td>3.014</td>
<td>46.968</td>
<td>1.015</td>
</tr>
<tr>
<td>35.338</td>
<td>3.284</td>
<td>44.026</td>
<td>1.417</td>
</tr>
<tr>
<td>33.079</td>
<td>3.653</td>
<td>39.412</td>
<td>2.019</td>
</tr>
<tr>
<td>31.691</td>
<td>3.990</td>
<td>37.911</td>
<td>2.232</td>
</tr>
<tr>
<td>29.758</td>
<td>4.511</td>
<td>35.165</td>
<td>2.624</td>
</tr>
<tr>
<td>28.862</td>
<td>4.686</td>
<td>34.479</td>
<td>2.752</td>
</tr>
<tr>
<td>27.895</td>
<td>4.988</td>
<td>33.513</td>
<td>3.007</td>
</tr>
<tr>
<td>23.533</td>
<td>6.369</td>
<td>30.287</td>
<td>3.764</td>
</tr>
<tr>
<td>23.063</td>
<td>7.03</td>
<td>29.474</td>
<td>4.245</td>
</tr>
<tr>
<td>22.448</td>
<td>6.903</td>
<td>28.796</td>
<td>4.441</td>
</tr>
<tr>
<td>20.648</td>
<td>7.001</td>
<td>26.995</td>
<td>4.851</td>
</tr>
<tr>
<td>19.527</td>
<td>8.223</td>
<td>25.988</td>
<td>4.943</td>
</tr>
<tr>
<td>18.566</td>
<td>8.648</td>
<td>25.202</td>
<td>5.174</td>
</tr>
<tr>
<td>17.139</td>
<td>9.206</td>
<td>24.466</td>
<td>5.444</td>
</tr>
<tr>
<td>16.689</td>
<td>9.819</td>
<td>23.929</td>
<td>5.602</td>
</tr>
<tr>
<td>14.413</td>
<td>10.741</td>
<td>23.524</td>
<td>5.750</td>
</tr>
<tr>
<td>13.481</td>
<td>11.250</td>
<td>23.078</td>
<td>5.879</td>
</tr>
<tr>
<td>12.493</td>
<td>11.807</td>
<td>22.407</td>
<td>6.143</td>
</tr>
<tr>
<td>11.816</td>
<td>12.186</td>
<td>21.760</td>
<td>6.391</td>
</tr>
<tr>
<td>10.935</td>
<td>12.716</td>
<td>21.336</td>
<td>6.508</td>
</tr>
<tr>
<td>9.593</td>
<td>13.512</td>
<td>20.702</td>
<td>6.774</td>
</tr>
<tr>
<td>19.960</td>
<td>7.116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.313</td>
<td>7.392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.387</td>
<td>7.765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.876</td>
<td>7.977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.320</td>
<td>8.220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.760</td>
<td>8.486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.192</td>
<td>8.773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.424</td>
<td>9.135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.414</td>
<td>9.661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.920</td>
<td>9.908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.780</td>
<td>10.511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.366</td>
<td>10.740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.000</td>
<td>10.918</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.586</td>
<td>11.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.196</td>
<td>11.357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.873</td>
<td>11.529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.445</td>
<td>11.775</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S6 Experimental binodal curve mass fraction data for the system PEG 600 (1) + Na₂SO₄ (2) + H₂O (3) + 5 wt % IL at 298 K

<table>
<thead>
<tr>
<th>[C₄mim][CH₃CO₂]</th>
<th>[C₄mim][HSO₄]</th>
<th>[C₄mim][HSO₄]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 w₁ 100 w₂</td>
<td>100 w₁ 100 w₂</td>
<td>100 w₁ 100 w₂</td>
</tr>
<tr>
<td>38.445 2.289</td>
<td>35.149 3.712</td>
<td>9.415 13.303</td>
</tr>
<tr>
<td>37.298 2.517</td>
<td>34.384 3.846</td>
<td>8.964 13.577</td>
</tr>
<tr>
<td>36.048 2.663</td>
<td>33.657 3.911</td>
<td>8.382 13.958</td>
</tr>
<tr>
<td>35.011 2.819</td>
<td>32.871 4.018</td>
<td>7.762 14.369</td>
</tr>
<tr>
<td>34.414 2.925</td>
<td>32.089 4.134</td>
<td></td>
</tr>
<tr>
<td>32.663 3.420</td>
<td>31.325 4.337</td>
<td></td>
</tr>
<tr>
<td>31.947 3.615</td>
<td>30.538 4.519</td>
<td></td>
</tr>
<tr>
<td>31.223 3.838</td>
<td>29.754 4.676</td>
<td></td>
</tr>
<tr>
<td>30.822 3.922</td>
<td>29.070 4.862</td>
<td></td>
</tr>
<tr>
<td>30.440 3.982</td>
<td>28.474 4.958</td>
<td></td>
</tr>
<tr>
<td>29.896 4.131</td>
<td>27.884 5.127</td>
<td></td>
</tr>
<tr>
<td>29.384 4.258</td>
<td>27.390 5.302</td>
<td></td>
</tr>
<tr>
<td>28.609 4.548</td>
<td>26.718 5.405</td>
<td></td>
</tr>
<tr>
<td>28.036 4.701</td>
<td>26.208 5.584</td>
<td></td>
</tr>
<tr>
<td>27.566 4.835</td>
<td>25.802 5.732</td>
<td></td>
</tr>
<tr>
<td>27.087 4.976</td>
<td>25.106 5.928</td>
<td></td>
</tr>
<tr>
<td>26.492 5.166</td>
<td>24.724 6.046</td>
<td></td>
</tr>
<tr>
<td>25.845 5.392</td>
<td>24.371 6.153</td>
<td></td>
</tr>
<tr>
<td>25.413 5.502</td>
<td>23.917 6.333</td>
<td></td>
</tr>
<tr>
<td>24.810 5.754</td>
<td>23.382 6.546</td>
<td></td>
</tr>
<tr>
<td>24.250 5.945</td>
<td>23.053 6.647</td>
<td></td>
</tr>
<tr>
<td>23.742 6.118</td>
<td>22.272 6.928</td>
<td></td>
</tr>
<tr>
<td>22.534 6.585</td>
<td>21.232 7.293</td>
<td></td>
</tr>
<tr>
<td>21.994 6.800</td>
<td>20.783 7.480</td>
<td></td>
</tr>
<tr>
<td>21.371 7.055</td>
<td>20.429 7.627</td>
<td></td>
</tr>
<tr>
<td>20.923 7.236</td>
<td>20.088 7.764</td>
<td></td>
</tr>
<tr>
<td>20.364 7.481</td>
<td>19.664 7.944</td>
<td></td>
</tr>
<tr>
<td>19.744 7.725</td>
<td>18.786 8.256</td>
<td></td>
</tr>
<tr>
<td>19.218 7.966</td>
<td>18.127 8.561</td>
<td></td>
</tr>
<tr>
<td>18.567 8.272</td>
<td>17.451 8.889</td>
<td></td>
</tr>
<tr>
<td>18.041 8.527</td>
<td>17.067 9.060</td>
<td></td>
</tr>
<tr>
<td>18.335 8.217</td>
<td>16.520 9.335</td>
<td></td>
</tr>
<tr>
<td>15.938 8.746</td>
<td>15.968 9.617</td>
<td></td>
</tr>
<tr>
<td>15.279 9.130</td>
<td>15.431 9.894</td>
<td></td>
</tr>
<tr>
<td>12.932 10.584</td>
<td>13.759 10.809</td>
<td></td>
</tr>
<tr>
<td>11.692 11.396</td>
<td>13.076 11.190</td>
<td></td>
</tr>
<tr>
<td>10.426 12.254</td>
<td>12.398 11.566</td>
<td></td>
</tr>
<tr>
<td>9.431 12.936</td>
<td>11.738 11.944</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.196 12.253</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.426 12.696</td>
<td></td>
</tr>
</tbody>
</table>