Selective cross-coupling of amines by alumina-supported palladium nanocluster catalysts

Ken-ichi Shimizu ^a*, Katsuya Shimura ^a*, Keiichiro Ohshima ^b, Masazumi Tamura ^b and Atsushi Satsuma ^b

^a Catalysis Research Center, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
^bDepartment of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

*Corresponding author: e-mail: kshimizu@cat.hokudai.ac.jp Tel.: +81-11-706-9240, fax.: +81-11-706-9163

Experimental

Commercially available organic compounds (from Tokyo Chemical Industry or Kishida Chemical) were used without further purification. The GC (Shimadzu GC-14B) and GCMS (Shimadzu GCMS-QP5000) analyses were carried out with a Rtx-65 capillary column (Shimadzu) using nitrogen as the carrier gas.

Pd/C (Pd = 5 wt%) was purchased from Kawaken Fine Chemicals. Pd black and PdO were purchased from Mitsuwa Chemical. γ -Al₂O₃ (with surface area of 124 m² g⁻¹) was prepared by calcination of γ -AlOOH (Catapal B Alumina purchased from Sasol) at 900 °C for 3 h. CeO₂ (140 m² g⁻¹) was purchased from Rhodia Electronics Catalysis. MgO (JRC-MGO-3, 19 m² g⁻¹) was supplied from Catalysis Society of Japan. SiO₂ (Q-10, 300 m² g⁻¹) was supplied from Fuji Silysia Chemical Ltd. ZrO₂ (60 m² g⁻¹) was prepared by hydrolysis of zirconium oxynitrate 2-hydrate in distilled water by gradually adding an aqueous NH₄OH solution (1.0 mol dm⁻³), filtration of precipitate, washing with distilled water three times, drying at 100 °C, and calcining at 500 °C.

Metal oxide-supported Pd catalysts (1 or 5 wt% Pd) were prepared by impregnating metal oxide with aqueous HNO₃ solution of Pd(NO₃)₂, followed by evaporation to dryness at 80 °C, drying at 120 °C for 12 h, calcination in air for 1 h, and reduction in H₂ for 0.5 h. Metal(M) loaded γ -Al₂O₃ (M= Rh, Pd, Pt, Ag) catalysts were prepared by the impregnating method using the following metal sources: aqueous HNO₃ solution of Rh(NO₃)₃, Pd(NO₃)₂ and Pt(NH₃)₂(NO₃)₂, aqueous solution of silver nitrates or ruthenium chloride. To control the metal particle size, temperatures of calcination (T_{cal}) and reduction (T_{H2}) were changed as summarized in Table 1. The catalysts are designated as Mx/Al₂O₃–D, where x is the metal content (wt%) and D is the metal particle sizes (nm). Pd1/Al₂O₃–1.8 was used as a standard catalyst.

The number of surface metal atom in Pt, Pd, Rh, and Ru catalysts, pre-reduced in H₂ at 200 °C, were estimated with the CO uptake of the samples using the pulse-adsorption of CO in a flow of He at room temperature. CO adsorption experiments for the Pd loaded basic oxides (MgO and CeO₂) were carried out at -78 °C. The average particle size was calculated from the CO uptake assuming that CO was adsorbed on the surface of spherical Pt particles at CO/(surface Pt atom) = 1/1 stoichiometry.

X-Ray diffraction (XRD) patterns of the powdered catalysts were recorded with a Rigaku

MiniFlex II/AP diffractometer with Cu K α radiation. Average metal particle size was calculated from the half-width of the peak from the XRD pattern using Scherrer equation.

The X-ray photoelectron spectroscopy (XPS) measurements were carried out using a JEOL JPS-900MC with Al $K\alpha$ anode operated at 20 mA and 10 kV. The oxygen 1s core electron levels in support oxides were recorded. Binding energies were calibrated with respect to C_{1s} at 285.0 eV.

Pd1/Al₂O₃-1.8 (1 mol% Pd with respect to benzyl amine) were added to the mixture of benzyl amine (1.0 mmol), cyclic amines (2.0 mmol) and *o*-xylene (2 mL) in a reaction vessel equipped with a condenser and N₂ was filled. The resulting mixture was vigorously stirred under reflux condition (heating temperature = 155 °C) for 1 h. The reaction mixture was analyzed by GC (Rtx-65 capillary column, 30 m). Conversion of aniline and yields of products were determined by GC using *n*-dodecane as an internal standard.

Fig. S1. Brown–Okamoto plot for the reaction of **2a** with *p*-substituted benzyl amines by $Pd1/Al_2O_3-1.8$. Reaction conditions are shown in Table 2.

Fig. S2. Time course of the yields of 1a, 3a , 4a and 6a for the reaction of 1a with 2a by $Pd1/Al_2O_3-1.8$ (Table 2, entry 1).